Marine Biology

, 165:88 | Cite as

Carbonic anhydrase activity in seaweeds: overview and recommendations for measuring activity with an electrometric method, using Macrocystis pyrifera as a model species

  • Pamela A. FernándezEmail author
  • Michael Y. Roleda
  • Ralf Rautenberger
  • Catriona L. Hurd


Carbonic anhydrase (CA) plays an important physiological role in all biological systems by accelerating the interconversion of CO2 and HCO3. In algae, CA is essential for photosynthesis: external CA (CAext) dehydrates HCO3, enhancing the supply of CO2 to the cell surface, and internal CA (CAint) interconverts HCO3 and CO2 to maintain the inorganic carbon (Ci) pool and supply CO2 to RuBisCO. We first conducted a literature review comparing the conditions in which CA extraction and measurement have been carried out, using the commonly used Wilbur–Anderson method. We found that the assay has been widely modified since its introduction in 1948, mostly without being optimized for the species tested. Based on the review, an optimized protocol for measuring CA in Macrocystis pyrifera was developed, which showed that the assay conditions can strongly affect CA activity. Tris–HCl buffer gave the highest levels of CA activity, but phosphate buffer reduced activity significantly. Buffers containing polyvinylpyrrolidone (PVP) and dithiothreitol (DTT) stabilized CA. Using the optimized assay, CAext and CAint activities were readily measured in Macrocystis with higher precision compared to the non-optimized method. The CAint activity was 2 × higher than CAext, which is attributed to the Ci uptake mechanisms of Macrocystis. This study suggests that the CA assay needs to be optimized for each species prior to experimental work to obtain both accurate and precise results.



We acknowledge the support of a PhD scholarship from the Chilean government to Pamela A. Fernández (BECAS CHILE–CONICYT), a grant from The Royal Society of New Zealand Mardsen fund (UOO0914) to Catriona L. Hurd, and a German Research Foundation grant (RA 2030/1,1) to Ralf Rautenberger. The authors are grateful to Pablo Leal for his help with seaweed collection.


This study was funded by the Chilean program for BECAS CHILE-CONICYT, for a Royal Society of New Zealand Mardsen grant (UOO0914), and a German Research Foundation grant (RA 2030/1,1).

Compliance with ethical standard

Conflict of interest

Pamela A. Fernández declares that she has no conflict of interest. Michael Y. Roleda declares that he has no conflict of interest. Ralf Rautenberger declares that he has no conflict of interest. Catriona L. Hurd declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.


  1. Andría JR, Pérez-Lloréns JL, Vergara JJ (1999) Mechanisms of inorganic carbon acquisition in Gracilaria gaditana nom. prov. (Rhodophyta). Planta 208:564–573CrossRefGoogle Scholar
  2. Atkins CA, Patterson BD, Graham D (1972) Plant carbonic anhydrases: I. Distribution of types among species. Plant Physiol 50:214–217CrossRefPubMedPubMedCentralGoogle Scholar
  3. Axelsson L, Ryberg H, Beer S (1995) Two modes of bicarbonate utilization in the marine green macroalga Ulva lactuca. Plant Cell Envriron 18:439–445CrossRefGoogle Scholar
  4. Badger M (2003) The roles of carbonic anhydrases in photosynthetic CO2 concentrating mechanisms. Photosynth Res 77:83–94CrossRefPubMedGoogle Scholar
  5. Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 45:369–392CrossRefGoogle Scholar
  6. Bi Y, Zhou Z (2016) Absorption and transport of inorganic carbon in kelps with emphasis on Saccharina japonica. Appl Photosynth New Progress, Dr Mohammad Najafpour (ed), InTech,
  7. Booth WA, Beardall J (1991) Effects of salinity on inorganic carbon utilization and carbonic anhydrase activity in the halotolerant alga Dunaliella salina (Chlorophyta). Phycologia 30(2):220–225CrossRefGoogle Scholar
  8. Bowes GW (1969) Carbonic anhydrase in marine algae. Plant Physiol 44:726–732CrossRefPubMedPubMedCentralGoogle Scholar
  9. Connan S, Delisle F, Deslandes E, Gall EA (2006) Intra-thallus phlorotannin content and antioxidant activity in Phaeophyceae of temperate waters. Bot Mar 49:39–46CrossRefGoogle Scholar
  10. Cook CM, Lanaras T, Colmanm B (1986) Evidence for bicarbonate transport in species of red and brown macrophytic marine algae. J Exp Bot 37(180):977–984CrossRefGoogle Scholar
  11. Cook CM, Lanaras T, Roubelakis-Angelakis KA (1988) Bicarbonate transport and alkalization of the medium by four species of Rhodophyta. J Exp Bot 39(206):1185–1198CrossRefGoogle Scholar
  12. Cornwall CE, Revill AT, Hall-Spencer JM, Milazzo M, Raven JA, Hurd CL (2017) Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Sci Rep 7:46297CrossRefPubMedPubMedCentralGoogle Scholar
  13. Datta PK, Shepard TH (1959) Carbonic anhydrase: a spectrophotometric assay. Arch Biochem Biophys 79:136–145CrossRefGoogle Scholar
  14. Deng Y, Yao Y, Wang X, Guo H, Duan D (2012) Transcriptome sequenc- ing and comparative analysis of Saccharina japonica (Laminariales, Phaeophyceae) under blue light induction. PLoS One 7:e39704CrossRefPubMedPubMedCentralGoogle Scholar
  15. DeVoe H, Kistiakowsky GB (1961) The enzymic kinetics of carbonic anhydrase from bovine and human erythrocytes. J Am Chem Soc 83:274–280CrossRefGoogle Scholar
  16. DiMario RJ, Machingura MC, Waldrop GL, Moroney JV (2018) The many types of carbonic anhydrases in photosynthetic organisms. Plant Sci 268:11–17CrossRefPubMedGoogle Scholar
  17. Dionisio ML, Tzuzuki M, Miyachi S (1989) Light requirement for carbonic anhydrase induction in Chlamydomonas reinhardtii. Plant Cell Physiol 30:207–213CrossRefGoogle Scholar
  18. Dodgson SJ, Tashian RE, Gros G, Carter ND (1991) The carbonic anhydrases: Cellular physiology and molecular genetics. Plenum, New York, p 375CrossRefGoogle Scholar
  19. Fernández PA, Hurd CL, Roleda MY (2014) Bicarbonate uptake via an anion exchange is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH. J Phycol 50:998–1008CrossRefPubMedGoogle Scholar
  20. Fernández PA, Roleda MY, Hurd CL (2015) Effects of ocean acidification on the photosynthetic performance, carbonic anhydrase activity and growth of the giant kelp Macrocystis pyrifera. Photosynth Res 124:293–304CrossRefPubMedGoogle Scholar
  21. Figueroa FL, Viñegla B (2001) Effects of solar UV radiation on photosynthesis and enzyme activities (carbonic anhydrase and nitrate reductase) in marine macroalgae from sothern Spain. Rev Chil Hist Nat 74:237–249CrossRefGoogle Scholar
  22. Flores-Moya A, Gómez I, Viñegla B, Altamirano M, Pérez-Rodríguez E, Maestre C, Caballero RM, Figueroa F (1998) Effects of solar radiation on the endemic Mediterranean red alga Rissoella verruculosa: photosynthetic performance, pigment content and the activities of enzymes related to nutrient uptake. New Phytol 139:673–683CrossRefGoogle Scholar
  23. García-Sánchez MJ, Fernández JA, Niell X (1994) Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata. Planta 194:55–61CrossRefGoogle Scholar
  24. Giordano M, Maberly SC (1989) Distribution of carbonic anhydrase in British marine macroalgae. Oecologia 81:534–539CrossRefPubMedGoogle Scholar
  25. Gómez I, Huovinen P (2010) Induction of phlorotannins during UV exposure mitigates inhibition of photosynthesis and DNA damage in the kelp Lessonia nigrescens. Photochem Photobiol 86:1056–1063CrossRefPubMedGoogle Scholar
  26. Gómez I, Pérez-Rodríguez E, Viñegla B, Fl F, Karsten U (1998) Effects of solar radiation on photosynthesis, UV-absorbing compounds and enzyme activities of the green alga Dasycladus vermicularis from southern Spain. J Photochem Photobiol B Biol 47:46–57CrossRefGoogle Scholar
  27. Gordillo FJ, Aguilera J, Jiménez C (2006) The response of nutrient assimilation and biochemical composition of Arctic seaweeds to a nutrient input in summer. J Exp Bot 57:2661–2671CrossRefPubMedGoogle Scholar
  28. Gordillo FJL, Aguilera J, Wiencke C, Jimenez C (2015) Ocean acidification modulates the response of two Arctic kelps to ultraviolet radiation. J Plant Physiol 173:41–50CrossRefPubMedGoogle Scholar
  29. Graham D, Smillie RM (1976) Carbonate dehydratase in marine organisms of the Great Barrier Reef. Aust J Plant Physiol 3:113–119CrossRefGoogle Scholar
  30. Graham M, Vásquez J, Buschmann A (2007) Global ecology of the giant kelp Macrocystis: from ecotypes to ecosystems. Oceanogr Mar Biol Annu Rev 45:39–88Google Scholar
  31. Griffiths H, Meyer MT, Rickaby REM (2017) Overcoming adversity through diversity: aquatic carbon concentrating mechanisms. J Exp Bot 68(14):3689–3695CrossRefPubMedPubMedCentralGoogle Scholar
  32. Haglund K, Pedersén M (1992) Growth of the red alga Gracilaria tenuistipitata at high pH Influence of some environmental factors and correlation to an increased carbonic-anhydrase activity. Bot Mar 35:579–587CrossRefGoogle Scholar
  33. Haglund K, Björk M, Ramazanov Z, Gárcia-Reina G, Pedersén M (1992a) Role of carbonic anhydrase in photosynthesis and inorganic-carbon assimilation in the red alga Gracilaria tenuistipitata. Planta 187:275–281CrossRefPubMedGoogle Scholar
  34. Haglund K, Ramazanov Z, Mtolera M, Pedersén M (1992b) Role of external carbonic anhydrase in light-dependent alkalization by Fucus serratus L. and Laminaria saccharina (L.) Lamour. (Phaeophyta). Planta 188:1–6CrossRefPubMedGoogle Scholar
  35. Heinrich S, Valentin KU, Frickenhaus S, John U, Wiencke C (2012) Transcriptomic analysis of acclimation to temperature and light stress in Saccharina latissima (Phaeophyceae). PLoS One 7:e44342CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hepburn CD, Pritchard DW, Cornwall CE, McLeod RJ, Beardall J, Raven JA, Hurd CL (2011) Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Glob Chang Biol 17:2488–2497CrossRefGoogle Scholar
  37. Hofmann LC, Straub S, Bischof K (2013) Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officinalis. J Exp Bot 64(4):899–908CrossRefPubMedPubMedCentralGoogle Scholar
  38. Huovinen P, Gómez I, Orostegui M (2007) Patterns and UV sensitivity of carbon anhydrase and nitrate reductase activities in south Pacific macroalgae. Mar Biol 151:1813–1821CrossRefGoogle Scholar
  39. Hurd CL, Berges JA, Osborne J, Harrison PJ (1995) An in vitro nitrate reductase assay for marine macroalgae: optimization and characterization of the enzyme for Fucus gardneri (Phaeophyta). J Phycol 31:835–843CrossRefGoogle Scholar
  40. Husic DH (1991) Extracellular carbonic anhydrase of Clamydomonas reinhardtii: localization, structural properties, and catalytic properties. Can J Bot 69:1079–1087CrossRefGoogle Scholar
  41. Husic DH, Hsieh S, Berrier AL (1991) Effect of dithiothreitol on the catalytic activity, quaternary structure and sulfonamide-binding properties of an extracellular carbonic anhydrase from Chlamydomonas reinhardtii. Biochim Biophys Acta 1078:35–42CrossRefPubMedGoogle Scholar
  42. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the fifth assessment report (AR5) of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 1535Google Scholar
  43. Kevekordes K, Holland D, Hӓubner N, Jenkins S, Koss R, Roberts S, Raven JA, Scrimgeour K, Shelly K, Stojkovic S, Beardall J (2006) Inorganic carbon acquisition by eight species of Caulerpa (Caulerpaceae, Chlorophyta). Phycologia 45(4):442–449CrossRefGoogle Scholar
  44. Klenell M, Snoeijs P, Pedersen M (2004) Active carbon in Laminaria digitata and L. saccharina (Phaeophyta) is driven by a proton pump in the plasma membrane. Hydrobiologia 514:41–53CrossRefGoogle Scholar
  45. Kupriyanova E, Pronina N, Los D (2017) Carbonic anhydrase—a universal enzyme of the carbon-based life. Photosynthetica 55(1):3–19CrossRefGoogle Scholar
  46. Lionetto MG, Caricato R, Giordano ME, Schettino T (2016a) The complex relationship between metals and carbonic anhydrase: new insights and perspectives. Int J Mol Sci 17:127CrossRefPubMedCentralGoogle Scholar
  47. Lionetto MG, Caricato R, Giordano ME, Schettino T (2016b) Carbonic anhydrase based biomarkers: potential application in human health and environmental sciences. Curr Biomarkers 6(1):40–46CrossRefGoogle Scholar
  48. Mackey KRM, Morris JJ, Morel FMM, Kranz SA (2015) Response of photosynthesis to ocean acidification. Oceanogr 28(2):74–91CrossRefGoogle Scholar
  49. Maren TH (1967) Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev 47(4):595–791CrossRefPubMedGoogle Scholar
  50. Mercado JM, Niell X (1999) Carbonic anhydrase activity and use of HCO3 in Bostrychia scorpioides (Ceramiales, Rhodophyceae). Eur J Phycol 34:13–19CrossRefGoogle Scholar
  51. Mercado JM, Figueroa FL, Niell FX, Axelsson L (1997a) A new method for estimating external carbonic anhydrase activity in macroalgae. J Phycol 33:999–1006CrossRefGoogle Scholar
  52. Mercado JM, Niell FX, Figueroa FL (1997b) Regulation of the mechanism for HCO3 use by the inorganic carbon level in Porphyra leucosticta Thur. in Le Jolis (Rhodophyta). Planta 201:319–325CrossRefPubMedGoogle Scholar
  53. Mercado JM, Gordillo FJL, Figueroa FL, Niell FX (1998) External carbonic anhydrase and affinity for inorganic carbon in intertidal macroalgae. J Exp Mar Biol Ecol 221:209–220CrossRefGoogle Scholar
  54. Mercado JM, Javier F, Gordillo L, Niell FX, Figueroa FL (1999) Effects of different levels of CO2 on photosynthesis and cell components of the red alga Porphyra leucosticta. J Appl Phycol 11:455–461CrossRefGoogle Scholar
  55. Mercado JM, Niell FX, Gil-Rodríguez MC (2001) Photosynthesis might be limited by light, not inorganic carbon availability, in three intertidal Gelidiales species. New Phytol 149:431–439CrossRefGoogle Scholar
  56. Mercado JM, Sanchez P, Carmona R, Niell X (2002) Limited acclimation of photosynthesis to blue light in the seaweed Gracilaria tenuistipitata. Physiol Plantarum 114:491–498CrossRefGoogle Scholar
  57. Miller AG, Colman B (1980) Evidence for HCO3 transport by the blue-green alga (Cyanobacterium) Coccochloris peniocystis. Plant Physiol 65:397–402CrossRefPubMedPubMedCentralGoogle Scholar
  58. Miyachi S, Tsuzuki M, Avramova ST (1983) Utilization modes of inorganic carbon for photosynthesis in various species of Chlorella. Plant Cell Physiol 24:441–451Google Scholar
  59. Moroney JV, Ma Y, Frey WD, Fusilier KA, Pham TT, Simms TA, DiMario RJ, Yang J, Mukherjee B (2011) The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. Photosyn Res 109(1–3):133–149CrossRefPubMedGoogle Scholar
  60. Mustaffa NIH, Striebel M, Wurl O (2017) Extracellular carbonic anhydrase: method development and its application to natural seawater. Limnol Oceanogr Methods 15:503–517CrossRefGoogle Scholar
  61. Nelson EB, Cenedella A, Tolbert NE (1969) Carbonic anhydrase levels in Chlamydomonas. Phytochemistry 8:2305–2306CrossRefGoogle Scholar
  62. Olischläger M, Wiencke C (2013) Ocean acidifi cation alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta). J Exp Bot 18(5):587–597Google Scholar
  63. Olischläger M, Bartsch I, Gutow L, Wiencke C (2012) Effects of ocean acidification on different life-cycle stages of the kelp Laminaria hyperborea (Phaeophyceae). Bot Mar 55:511–525CrossRefGoogle Scholar
  64. Price GD, Coleman JR, Badger MR (1992) Association of carbonic anhydrase activity with carboxysomes isolated from the Cyanobacterium synechococcus PCC7942. Plant Physiol 100:784–793CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ramazanov M, Semenenko VE (1988) Content of the CO2-dependent form of carbonic anhydrase as a function of light intensity and photosynthesis. Sov Plant Physiol 35:340–344Google Scholar
  66. Rautenberger R, Fernández PA, Strittmatter M, Heesch S, Cornwall CE, Hurd CL, Roleda MY (2015) Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in Ulva rigida (Chlorophyta). Ecol Evol 5:874–888CrossRefPubMedPubMedCentralGoogle Scholar
  67. Raven JA (1995) Photosynthetic and non-photosynthetic roles of carbonic anhydrase in algae and cyanobacteria. Phycologia 34(2):93–101CrossRefGoogle Scholar
  68. Raven JA (2001) A role for mitochondrial carbonic anhydrase in limiting CO2 leakage from low CO2-grown cells of Chlamydomonas reinhardtii. Plant Cell Environt 24:261–265CrossRefGoogle Scholar
  69. Raven JA, Beardall J, Sanchez-Baracaldo P (2017) The possible evolution and future of CO2-concentrating mechanisms. J Exp Bot 68(14):3701–3716CrossRefPubMedGoogle Scholar
  70. Reiskind JB, Seamon PT, Bowes G (1988) Alternative methods of photosynthetic carbon assimilation in marine macroalgae. Plant Physiol 87:686–692CrossRefPubMedPubMedCentralGoogle Scholar
  71. Rost B, Kranz SA, Richter KU, Tortell PD (2007) Isotope disequilibrium and mass spectrometric studies of inorganic carbon acquisition by phytoplankton. Limnol Oceanogr Methods 5:328–337CrossRefGoogle Scholar
  72. Rothäusler E, Gómez I, Hinojosa IA, Karsten U, Tala F, Thiel M (2011) Physiological performance of floating giant kelp Macrocystis pyrifera (Phaeophyceae): latitudinal variability in the effects of temperature and grazing. J Phycol 47:269–281CrossRefPubMedGoogle Scholar
  73. Roughton FJW, Booth VH (1946) The effect of substrate concentration, pH and other factors upon the activity of carbonic anhydrase. Biochem J 40:319–330CrossRefPubMedPubMedCentralGoogle Scholar
  74. Rowlett RS, Silverman DN (1982) Kinetics of the protonation of buffer and hydration of CO2 catalyzed by human carbonic anhydrase II. J Am Chem Soc 104:6737–6741CrossRefGoogle Scholar
  75. Rowlett RS, Chance MR, Wirt MD, Sidelinger DE, Royal JR, Woodroffe M, Wang Y-FA, Saha RP, Lam MG (1994) Kinetic and structural characterization of spinach carbonic- anhydrase. Biochemistry 33:13967–13976CrossRefPubMedGoogle Scholar
  76. Samukawa M, Shen C, Hopkinson BM, Matsuda Y (2014) Localization of putative carbonic anhydrases in the marine diatom, Thalassiosira pseudonana. Photosynth Res 121:235–249CrossRefPubMedGoogle Scholar
  77. Sharma A, Bhattacharya A (2010) Enhanced biomimetic sequestration of CO2 into CaCO3 using purified carbonic anhydrase from indigenous bacterial strains. J Mol Catal B Enzym 67:122–128CrossRefGoogle Scholar
  78. Sharma A, Bhattacharya A, Singh S (2009) Purification and characterization of an extracellular carbonic anhydrase from Pseudomonas fragi. Process Biochem 44:1293–1297CrossRefGoogle Scholar
  79. Shitov AV, Zharmukhamedova SK, Shutova TV, Allakhverdiev SI, Samuelsson G, Klimov VV (2011) A carbonic anhydrase inhibitor induces bicarbonate-reversible suppression of electron transfer in pea photosystem 2 membrane fragments. J Photochem Photobiol B 104:336–371CrossRefGoogle Scholar
  80. Silverman DN, Lindskog S (1988) The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting proteolysis of water. Acc Chem Res 21:30–36CrossRefGoogle Scholar
  81. Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29(4):436–459CrossRefGoogle Scholar
  82. Sültemeyer DF (1998) Carbonic anhydrase in eukaryotic algae: characteristics, regulation, and possible function during photosynthesis. Can J Bot 76:962–972Google Scholar
  83. Sültemeyer D, Heinrich P, Fock P, Canvin DT (1990) Mass spectrometric measurement of intracellular carbonic anhydrase activity in high and low Ci cells of Chlamydomonas. Plant Physiol 94:1250–1257CrossRefPubMedPubMedCentralGoogle Scholar
  84. Surif MB, Raven JA (1989) Exogenous inorganic carbon sources for photosynthesis in seawater by members of the Fucales and the Laminariales (Phaeophyta): ecological and taxonomic implications. Oecologia 78:97–105CrossRefPubMedGoogle Scholar
  85. Tachibana M, Allen AE, Kikutani S, Endo Y, Bowler C, Matsuda Y (2011) Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Photosynth Res 109:205–221CrossRefPubMedGoogle Scholar
  86. The Royal Society (2005) Ocean acidification due to increasing atmospheric carbon dioxide. Policy document 12/05 Royal Society, London. The Clyvedon Press Ltd, CardiffGoogle Scholar
  87. Thomas TE, Harrison PJ (1988) A comparison of in vitro and in vivo nitrate reductase assays in three intertidal seaweeds. Bot Mar 31:101–107Google Scholar
  88. Toth GB, Pavia H (2001) Removal of dissolved brown algal phlorotannins using insoluble Polyvinylpolypyrrolidone (PVPP). J Chem Ecol 27:1899–1910CrossRefPubMedGoogle Scholar
  89. Tsuzuki M (1983) Mode of HCO3 utilization by the cells of Chlamydomonas reinhardtii grown under ordinary air. Z Pflanzenphysiol 110:29–37CrossRefGoogle Scholar
  90. Tsuzuki M, Shimamoto T, Yang SY, Miyachi S (1984) Diversity in intracellular locality, nature, and function of carbonic anhydrase in various plants. Ann NY Acad Sci 429:238–240CrossRefGoogle Scholar
  91. van Hille RP (2001) Biological generation of reactive alkaline species and their application in a sustainable bioprocess for the remediation of acid metal contaminated wastewaters. Ph.D. Dissertation, Rhodes University, South AfricaGoogle Scholar
  92. van Hille R, Fagan M, Bromfield L, Pott R (2014) A modified pH drift assay for inorganic carbon accumulation and external carbonic anhydrase activity in microalgae. J Appl Phycol 26:377–385CrossRefGoogle Scholar
  93. Waygood ER (1955) Carbonic anhydrase (plant and animal). In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 2. Academic Press, New York, pp 836–846Google Scholar
  94. Weaver CI, Wetzel RG (1980) Carbonic anhydrase levels and internal lacunar CO2 concentrations in aquatic macrophytes. Aquat Bot 8:173–186CrossRefGoogle Scholar
  95. Wilbur KM, Anderson NG (1948) Electrometric and colorimetric determination of carbonic anhydrase. J Biol Chem 176:147–154PubMedGoogle Scholar
  96. Xu Y, Feng L, Jeffrey PD, Shi Y, Morel MM (2008) Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452:56–61CrossRefPubMedGoogle Scholar
  97. Ye RX, Yu Z, Shi WW, Gao HJ, Bi YH, Zhou ZG (2014) Characterization of a-type carbonic anhydrase (CA) gene and subcellular localization of a-CA in the gametophytes of Saccharina japonica. J Appl Phycol 26:881–890CrossRefGoogle Scholar
  98. Yue GF, Wang JX, Wang JF (2001) Inorganic carbon acquisition by juvenile sporophyte of Laminarials (L. japonica × L. longissima). Oceanologia et Limnologia Sinica 32(6):647–652Google Scholar
  99. Zou DH, Gao KS, Xia JR (2003) Photosynthetic utilization of inorganic carbon in the economic brown alga, Hizikia fusiforme (Sargassaceae) from the South China Sea. J Phycol 36:1095–1100CrossRefGoogle Scholar
  100. Zou DH, Gao KS, Chen W (2011) Photosynthetic carbon acquisition in Sargassum henslowianum (Fucales, Phaeophyta), with special reference to the comparison between the vegetative and reproductive tissues. Photosynth Res 107:159–168CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BotanyUniversity of OtagoDunedinNew Zealand
  2. 2.Centro i ~ marUniversidad De Los LagosPuerto MonttChile
  3. 3.Norwegian Institute of Bioeconomy ResearchBodøNorway
  4. 4.The Marine Science Institute, College of ScienceUniversity of the Philippines DilimanQuezon CityPhilippines
  5. 5.Institute for Marine and Antarctic Studies (IMAS)University of TasmaniaHobartAustralia

Personalised recommendations