Advertisement

Marine Biology

, 165:56 | Cite as

The effects of environmental history and thermal stress on coral physiology and immunity

  • Christopher B. Wall
  • Contessa A. Ricci
  • Grace E. Foulds
  • Laura D. Mydlarz
  • Ruth D. Gates
  • Hollie M. Putnam
Original paper

Abstract

Rising ocean temperatures can induce the breakdown of the symbiosis between reef building corals and Symbiodinium in the phenomenon known as coral bleaching. Environmental history may, however, influence the response of corals to stress and affect bleaching outcomes. A suite of physiological and immunological traits was evaluated to test the effect of environmental history (low vs. high variable pCO2) on the response of the reef coral Montipora capitata to elevated temperature (24.5 °C vs. thermal ramping to 30.5 °C). Heating reduced maximum photochemical efficiency (Fv/Fm) and chlorophyll a but increased tissue melanin in corals relative to the ambient treatment, indicating a role of the melanin synthesis pathway in the early stages of thermal stress. However, interactions of environmental history and temperature treatment were not observed. Rather, parallel reaction norms were the primary response pattern documented across the two temperature treatments with respect to reef environmental history. Corals with a history of greater pCO2 variability had higher constitutive antioxidative and immune activity (i.e., catalase, superoxide dismutase, prophenoloxidase) and Fv/Fm, but lower melanin and chlorophyll a, relative to corals with a history of lower pCO2 variability. This suggests that reef environments with high magnitude pCO2 variability promote greater antioxidant and immune activity in resident corals. These results demonstrate coral physiology and immunity reflect environmental attributes that vary over short distances, and that these differences may buffer the magnitude of thermal stress effects on coral phenotypes.

Notes

Acknowledgements

We thank Dr. Eric H. De Carlo and colleagues with NOAA PMEL and CRIMP CO2 program for Kāne‘ohe Bay pCO2 data, and two reviewers for suggestions that improved the manuscript. Biological collections were performed in accordance with the state of Hawai‘i Department of Land and Natural Resources Division of Aquatic Resources permitting guidelines. CBW was supported by an Environmental Protection Agency (EPA) STAR Fellowship Assistance Agreement (FP-91779401-1). The views expressed in this publication have not been reviewed or endorsed by the EPA and are solely those of the authors. HMP was supported by NSF OCE-PRF 1323822. LDM was supported by NSF 1017458, and CAR was supported by LSAMP Bridge to Doctorate program. This is HIMB contribution number 1722, SOEST contribution number 10328.

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. Aeby GS, Ross M, Williams GJ, Lewis TD, Works TM (2010) Disease dynamics of Montipora white syndrome within Kaneohe Bay, Oahu, Hawaii: distribution, seasonality, virulence, and transmissibility. Dis Aquat Organ 91:1–8PubMedCrossRefGoogle Scholar
  2. Ainsworth TD, Heron SF, Ortiz JC, Mumby PJ, Grech A, Ogawa D, Eakin CM, Leggat W (2016) Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352:338–342PubMedCrossRefGoogle Scholar
  3. Albright R, Benthuysen J, Cantin N, Caldeira K, Anthony K (2015) Coral reef metabolism and carbon chemistry dynamics of a coral reef flat. Geophys Res Lett 42:3980–3988CrossRefGoogle Scholar
  4. Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annu Rev Mar Sci 5:321–348CrossRefGoogle Scholar
  5. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105:17442–17446PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barshis DJ, Stillman JH, Gates RD, Toonen RJ, Smith LW, Birkeland C (2010) Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: does host genotype limit phenotypic plasticity? Mol Ecol 19:1705–1720PubMedCrossRefGoogle Scholar
  7. Bongaerts P, Riginos C, Ridgway T, Sampayo EM, van Oppen MJH, Englebert N, Vermeulen F, Hoegh-Guldberg O (2010) Genetic divergence across habitats in the widespread coral Seriatopora hystrix and its associated Symbiodinium. PLoS One 5:e10871PubMedPubMedCentralCrossRefGoogle Scholar
  8. Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B Methodol 26:211–252Google Scholar
  9. Brown BE, Dunne RP, Goodson MS, Douglas AE (2000) Bleaching patterns in reef corals. Nature 404:142–143PubMedCrossRefGoogle Scholar
  10. Brown B, Dunne R, Goodson M, Douglas A (2002a) Experience shapes the susceptibility of a reef coral to bleaching. Coral Reefs 21:119–126Google Scholar
  11. Brown BE, Downs CA, Dunne RP, Gibb SW (2002b) Exploring the basis of thermotolerance in the reef coral Goniastrea aspera. Mar Ecol Prog Ser 242:119–129CrossRefGoogle Scholar
  12. Calosi P, Rastrick SPS, Lombardi C, de Guzman HJ, Davidson L, Jahnke M, Giangrande A, Hardege JD, Schulze A, Spicer JI, Gambi M-C (2013) Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system. Philos Trans R Soc Lond B Biol Sci 368:20120444PubMedPubMedCentralCrossRefGoogle Scholar
  13. Carilli J, Donner SD, Hartmann AC (2012) Historical temperature variability affects coral response to heat stress. PLoS One 7:e34418PubMedPubMedCentralCrossRefGoogle Scholar
  14. Coles SL, Jokiel PL (1978) Synergistic effects of temperature, salinity and light on the hermatypic coral Montipora verrucosa. Mar Biol 49:187–195CrossRefGoogle Scholar
  15. Coles SL, Jokiel PL, Lewis CR (1976) Thermal tolerance in tropical versus subtropical Pacific reef corals. Pac Sci 30:159–166Google Scholar
  16. Couch CS, Mydlarz LD, Harvell CD, Douglas NL (2008) Variation in measures of immunocompetence of sea fan coral, Gorgonia ventalina, in the Florida Keys. Mar Biol 155:281CrossRefGoogle Scholar
  17. Cox EF, Ribes M, Kinzie RAI (2006) Temporal and spatial scaling of planktonic responses to nutrient inputs into a subtropical embayment. Mar Ecol Prog Ser 324:19–35CrossRefGoogle Scholar
  18. Cunning R, Baker AC (2014) Not just who, but how many: the importance of partner abundance in reef coral symbioses. Front Microbiol 5:400–410PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cunning R, Ritson-Williams R, Gates RD (2016) Patterns of bleaching and recovery of Montipora capitata in Kāne‘ohe Bay, Hawai‘i, USA. Mar Ecol Prog Ser 551:131–139CrossRefGoogle Scholar
  20. De Carlo EH, Hoover DJ, Young CW, Hoover RS, Mackenzie FT (2007) Impact of storm runoff from tropical watersheds on coastal water quality and productivity. Appl Geochem 22:1777–1797CrossRefGoogle Scholar
  21. Dennison WC, Barnes DJ (1988) Effect of water motion on coral photosynthesis and calcification. J Exp Mar Bio Ecol 115:67–77CrossRefGoogle Scholar
  22. Dixon GB, Davies SW, Aglyamova GV, Meyer E, Bay LK, Matz MV (2015) Genomic determinants of coral heat tolerance across latitudes. Science 348:1460–1462PubMedCrossRefGoogle Scholar
  23. Douglas B, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48Google Scholar
  24. Downs CA, Fauth JE, Halas JC, Dustan P, Bemiss J, Woodley CM (2002) Oxidative stress and seasonal coral bleaching. Free Radic Biol Med 33:533–543PubMedCrossRefGoogle Scholar
  25. Drupp P, De Carlo EH, Mackenzie FT, Bienfang P, Sabine CL (2011) Nutrient inputs, phytoplankton response, and CO2 variations in a semi-enclosed subtropical embayment, Kaneohe Bay, Hawaii. Aquat Geochem 17:473–498CrossRefGoogle Scholar
  26. Drupp PS, De Carlo EH, Mackenzie FT, Sabine CL, Feely RA, Shamberger KE (2013) Comparison of CO2 dynamics and air-sea gas exchange in differing tropical reef environments. Aquat Geochem 19:371–397CrossRefGoogle Scholar
  27. Dunne RP, Brown BE (2001) The influence of solar radiation on bleaching of shallow water reef corals in the Andaman Sea, 1993–1998. Coral Reefs 20:201–210Google Scholar
  28. Edmunds PJ, Gates RD (2008) Acclimatization in tropical reef corals. Mar Ecol Prog Ser 361:307–310CrossRefGoogle Scholar
  29. Ellner SP, Jones LE, Mydlarz LD, Harvell CD (2007) Within-host disease ecology in the sea fan Gorgonia ventalina: modeling the spatial immunodynamics of a coral-pathogen interaction. Am Nat 170:E143–E161PubMedCrossRefGoogle Scholar
  30. Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1:165–169CrossRefGoogle Scholar
  31. Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr 45:677–685CrossRefGoogle Scholar
  32. Fitt W, Brown B, Warner M, Dunne R (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65CrossRefGoogle Scholar
  33. Fitt WK, Gates RD, Hoegh-Guldberg O, Bythell JC, Jatkar A, Grottoli AG, Gomez M, Fisher P, Lajuenesse TC, Pantos O, Iglesias-Prieto R, Franklin DJ, Rodrigues LJ, Torregiani JM, van Woesik R, Lesser MP (2009) Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: the host does matter in determining the tolerance of corals to bleaching. J Exp Mar Biol Ecol 373:102–110CrossRefGoogle Scholar
  34. Gaylord B, Kroeker KJ, Sunday JM, Anderson KM, Barry JP, Brown NE, Connell SD, Dupont S, Fabricius KE, Hall-Spencer JH, Klinger T, Milazzo M, Munday PL, Russell BD, Sanford E, Schreiber SJ, Thiyagarajan V, Vaughan MLH, Widdicombe S, Harley CDG (2015) Ocean acidification through the lens of ecological theory. Ecology 96:3–15PubMedCrossRefGoogle Scholar
  35. Gibbin EM, Putnam HM, Gates RD, Nitschke MR, Davy SK (2015) Species-specific differences in thermal tolerance may define susceptibility to intracellular acidosis in reef corals. Mar Biol 162:717–723CrossRefGoogle Scholar
  36. Gibbin EM, Chakravarti LJ, Jarrold MD, Christen F, Turpin V, N’Siala GM, Blier PU, Calosi P (2017) Can multi-generational exposure to ocean warming and acidification lead to the adaptation of life history and physiology in a marine metazoan? J Exp Biol 220:551–563PubMedCrossRefGoogle Scholar
  37. Grottoli-Everett A, Kuffner IB (1995) Uneven bleaching within colonies of the Hawaiian coral Montipora verrucosa. In: Gulko D, Jokiel PL (eds), Ultraviolet radiation and coral reefs. HIMB Technical Report #41, UNIHI-Sea Grant-CR-95-03, pp 115–120Google Scholar
  38. Guest JR, Baird AH, Maynard JA, Muttaqin E, Edwards AJ, Campbell SJ, Yewdall K, Affendi YA, Chou LM (2012) Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS One 7:e33353PubMedPubMedCentralCrossRefGoogle Scholar
  39. Heron SF, Maynard JA, van Hooidonk R, Mark Eakin C (2016) Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Sci Rep 6:srep38402CrossRefGoogle Scholar
  40. Hochachka PW, Somero GN (2002) Biochemical adaptation, mechanism and process in physiological evolution. Oxford University Press, New YorkGoogle Scholar
  41. Hoegh-Guldberg O, Jones RJ (1999) Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals. Mar Ecol Prog Ser 183:73–86CrossRefGoogle Scholar
  42. Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S (2017) Coral reef ecosystems under climate change and ocean acidification. Front Mar Sci 4:158CrossRefGoogle Scholar
  43. Hubbard DK (2015) Reef biology and geology—not just a matter of scale. In: Birkeland C (ed) Coral reefs in the anthropocene. Springer, Dordrecht, pp 43–66CrossRefGoogle Scholar
  44. Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, Palumbi SR, van Nes EH, Scheffer M (2017) Coral reefs in the anthropocene. Nature 546:82–90PubMedCrossRefGoogle Scholar
  45. Hume BCC, Voolstra CR, Arif C, D’Angelo C, Burt JA, Eyal G, Loya Y, Wiedenmann J (2016) Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. Proc Natl Acad Sci USA 113:4416–4421PubMedPubMedCentralCrossRefGoogle Scholar
  46. IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri RK, Meyer LA (eds)]. IPCC, Geneva, 151 ppGoogle Scholar
  47. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194CrossRefGoogle Scholar
  48. Jokiel PL, Brown EK (2004) Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Glob Change Biol 10:1627–1641CrossRefGoogle Scholar
  49. Jones RJ, Hoegh-Guldberg O (2001) Diurnal changes in the photochemical efficiency of the symbiotic dinoflagellates (Dinophyceae) of corals: photoprotection, photoinactivation and the relationship to coral bleaching. Plant Cell Environ 24:89–99CrossRefGoogle Scholar
  50. Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ 21:1219–1230CrossRefGoogle Scholar
  51. Kaniewska P, Campbell PR, Kline DI, Rodriguez-Lanetty M, Miller DJ, Dove S, Hoegh-Guldberg O (2012) Major cellular and physiological impacts of ocean acidification on a reef building coral. PLoS One 7:e34659PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kenkel CD, Matz MV (2016) Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nat Ecol Evol 1:14PubMedCrossRefGoogle Scholar
  53. Kenkel CD, Aglyamova G, Alamaru A, Bhagooli R, Capper R, Cunning R, deVillers A, Haslun JA, Hédouin L, Keshavmurthy S, Kuehl KA, Mahmoud H, McGinty ES, Montoya-Maya PH, Palmer CV, Pantile R, Sánchez JA, Schils T, Silverstein RN, Squiers LB, Tang P-C, Goulet TL, Matz MV (2011) Development of gene expression markers of acute heat-light stress in reef-building corals of the genus Porites. PLoS One 6:e26914PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kenkel CD, Goodbody-Gringley G, Caillaud D, Davies SW, Bartels E, Matz MV (2013a) Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments. Mol Ecol 22:4335–4348PubMedCrossRefGoogle Scholar
  55. Kenkel CD, Meyer E, Matz MV (2013b) Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments. Mol Ecol 22:4322–4334PubMedCrossRefGoogle Scholar
  56. Kenkel CD, Moya A, Strahl J, Humphrey C, Bay LK (2017) Functional genomic analysis of corals from natural CO2-seeps reveals core molecular responses involved in acclimatization to ocean acidification. Glob Change Biol.  https://doi.org/10.1111/gcb.13833 Google Scholar
  57. Kuznetsova A, Brockhoff PB, Christensen RHB (2016) lmerTest: tests in linear mixed effects models. R package version 2.0-32. https://CRAN.R-project.org/package=lmerTest. Accessed 01 Mar 2017
  58. Lesser MP (1997) Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16:187–192CrossRefGoogle Scholar
  59. Lesser MP (2004) Experimental biology of coral reef ecosystems. J Exp Mar Biol Ecol 300:217–252CrossRefGoogle Scholar
  60. Levin RA, Beltran VH, Hill R, Kjelleberg S, McDougald D, Steinberg PD, van Oppen MJH (2016) Sex, scavengers, and chaperones: transcriptome secrets of divergent Symbiodinium thermal tolerances. Mol Biol Evol 33:2201–2215PubMedPubMedCentralCrossRefGoogle Scholar
  61. Long MH, Rheuban JE, Berg P, Zieman JC (2012) A comparison and correction of light intensity loggers to photosynthetically active radiation sensors. Limnol Oceanogr Methods 10:416–424CrossRefGoogle Scholar
  62. Louis YD, Bhagooli R, Kenkel CD, Baker AC, Dyall SD (2017) Gene expression biomarkers of heat stress in scleractinian corals: promises and limitations. Comp Biochem Physiol C Toxicol Pharmacol 191:63–77PubMedCrossRefGoogle Scholar
  63. Lowe RJ, Falter JL, Monismith SG, Atkinson MJ (2009) A numerical study of circulation in a coastal reef-lagoon system. J Geophys Res 114:C06022CrossRefGoogle Scholar
  64. Mayfield AB, Chan P-H, Putnam HM, Chen C-S, Fan T-Y (2012) The effects of a variable temperature regime on the physiology of the reef-building coral Seriatopora hystrix: results from a laboratory-based reciprocal transplant. J Exp Biol 215:4183–4195PubMedCrossRefGoogle Scholar
  65. Maynard JA, Anthony KRN, Marshall PA, Masiri I (2008) Major bleaching events can lead to increased thermal tolerance in corals. Mar Biol 155:173–182CrossRefGoogle Scholar
  66. Middlebrook R, Hoegh-Guldberg O, Leggat W (2008) The effect of thermal history on the susceptibility of reef-building corals to thermal stress. J Exp Biol 211:1050–1056PubMedCrossRefGoogle Scholar
  67. Middlebrook R, Anthony KRN, Hoegh-Guldberg O, Dove S (2010) Heating rate and symbiont productivity are key factors determining thermal stress in the reef-building coral Acropora formosa. J Exp Biol 213:1026–1034PubMedCrossRefGoogle Scholar
  68. Miller J, Muller E, Rogers C, Waara R, Atkinson A, Whelan KRT, Patterson M, Witcher B (2009) Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands. Coral Reefs 28:925CrossRefGoogle Scholar
  69. Morrow KM, Bourne DG, Humphrey C, Botté ES, Laffy P, Zaneveld J, Uthicke S, Fabricius KE, Webster NS (2015) Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. ISME J 9:894–908PubMedCrossRefGoogle Scholar
  70. Mydlarz LD, Palmer CV (2011) The presence of multiple phenoloxidases in Caribbean reef-building corals. Comp Biochem Physiol A Mol Integr Physiol 159:372–378PubMedCrossRefGoogle Scholar
  71. Mydlarz LD, Holthouse SF, Peters EC, Harvell CD (2008) Cellular responses in sea fan corals: granular amoebocytes react to pathogen and climate stressors. PLoS One 3:e1811PubMedPubMedCentralCrossRefGoogle Scholar
  72. Mydlarz LD, Couch CS, Weil E, Smith G, Harvell CD (2009) Immune defenses of healthy, bleached and diseased Montastraea faveolata during a natural bleaching event. Dis Aquat Organ 87:67–78PubMedCrossRefGoogle Scholar
  73. Mydlarz LD, McGinty ES, Harvell CD (2010) What are the physiological and immunological responses of coral to climate warming and disease? J Exp Biol 213:934–945PubMedCrossRefGoogle Scholar
  74. Nakamura T, van Woesik R (2001) Water-flow rates and passive diffusion partially explain differential survival of corals during the 1998 bleaching event. Mar Ecol Prog Ser 212:301–304CrossRefGoogle Scholar
  75. Nappi AJ, Christensen BM (2005) Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. Insect Biochem Mol Biol 35:443–459PubMedCrossRefGoogle Scholar
  76. Nappi AJ, Vass E (1993) Melanogenesis and the generation of cytotoxic molecules during insect cellular immune reactions. Pigment Cell Res 6:117–126PubMedCrossRefGoogle Scholar
  77. NOAA (2017) Tides and Currents. Mokuoloe, Hawaii, Station ID: 1612480. National Oceanic and Atmospheric Administration, USA. https://tidesandcurrents.noaa.gov/stationhome.html?id=1612480. Accessed March 2017
  78. Noonan SHC, Fabricius KE (2016) Ocean acidification affects productivity but not the severity of thermal bleaching in some tropical corals. ICES J Mar Sci 73:715–726CrossRefGoogle Scholar
  79. Ortonne J-P (2002) Photoprotective properties of skin melanin. Br J Dermatol 61:7–10CrossRefGoogle Scholar
  80. Osmond CB, Anderson JM, Ball MC, Egerton JJG (1999) Compromising efficiency: the molecular ecology of light resource utilisation in terrestrial plants. In: Scholes C, Baker M (eds) Advances in physiological plant ecology. Blackwell, New Jersey, pp 1–24Google Scholar
  81. Padilla-Gamiño JL, Gaitán-Espitia JD, Kelly MW, Hofmann GE (2016) Physiological plasticity and local adaptation to elevated pCO2 in calcareous algae: an ontogenetic and geographic approach. Evol Appl 9:1043–1053PubMedPubMedCentralCrossRefGoogle Scholar
  82. Palmer CV, Traylor-Knowles N (2012) Towards an integrated network of coral immune mechanisms. Proc Biol Sci 279:4106–4114PubMedPubMedCentralCrossRefGoogle Scholar
  83. Palmer CV, Modi CK, Mydlarz LD (2009) Coral fluorescent proteins as antioxidants. PLoS One 4:e7298PubMedPubMedCentralCrossRefGoogle Scholar
  84. Palmer CV, Bythell JC, Willis BL (2010) Levels of immunity parameters underpin bleaching and disease susceptibility of reef corals. FASEB J 24:1935–1946PubMedCrossRefGoogle Scholar
  85. Palmer CV, McGinty ES, Cummings DJ, Smith SM, Bartels E, Mydlarz LD (2011a) Patterns of coral ecological immunology: variation in the responses of Caribbean corals to elevated temperature and a pathogen elicitor. J Exp Biol 214:4240–4249PubMedCrossRefGoogle Scholar
  86. Palmer CV, Traylor-Knowles NG, Willis BL, Bythell JC (2011b) Corals use similar immune cells and wound-healing processes as those of higher organisms. PLoS One 6:e23992PubMedPubMedCentralCrossRefGoogle Scholar
  87. Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA (2014) Mechanisms of reef coral resistance to future climate change. Science 344:895–898PubMedCrossRefGoogle Scholar
  88. Pandolfi JM, Kiessling W (2014) Gaining insights from past reefs to inform understanding of coral reef response to global climate change. Curr Opin Environ Sustain 7:52–58CrossRefGoogle Scholar
  89. Putnam HM, Davidson JM, Gates RD (2016) Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evol Appl 9:1165–1178PubMedPubMedCentralCrossRefGoogle Scholar
  90. Putnam HM, Barott KL, Ainsworth TD, Gates RD (2017) The vulnerability and resilience of reef-building corals. Curr Biol 27:R528–R540PubMedCrossRefGoogle Scholar
  91. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 01 Mar 2017
  92. Rautio M, Korhola A (2002) UV-induced pigmentation in subarctic Daphnia. Limnol Oceanogr 47:295–299CrossRefGoogle Scholar
  93. Rodrigues LJ, Grottoli AG (2007) Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol Oceanogr 52:1874–1882CrossRefGoogle Scholar
  94. Sabine C, De Carlo E, Musielewicz S, Maenner S, Bott R, Sutton A (2012) Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from time series observations using bubble type equilibrator for autonomous carbon dioxide (CO2) measurement, carbon dioxide (CO2) gas analyzer and other instruments from MOORING CRIMP1_158W_21N in the North Pacific Ocean from 2005-12-01 to 2008-05-30 (NODC Accession 0100069). Version 3.3. National Oceanographic Data Center, NOAA. Dataset. Accessed March 2017Google Scholar
  95. Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O (2008) Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci USA 105:10444–10449PubMedPubMedCentralCrossRefGoogle Scholar
  96. Shamberger KEF, Feely RA, Sabine CL, Atkinson MJ, DeCarlo EH, Mackenzie FT, Drupp PS, Butterfield DA (2011) Calcification and organic production on a Hawaiian coral reef. Mar Chem 127:64–75CrossRefGoogle Scholar
  97. Söderhäll K, Cerenius L (1998) Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 10:23–28PubMedCrossRefGoogle Scholar
  98. Stat M, Bird CE, Pochon X, Chasqui L, Chauka LJ, Concepcion GT, Logan D, Takabayashi M, Toonen RJ, Gates RD (2011) Variation in Symbiodinium ITS2 sequence assemblages among coral colonies. PLoS One 6:e15854PubMedPubMedCentralCrossRefGoogle Scholar
  99. Stat M, Pochon X, Franklin EC, Bruno JF, Casey KS, Selig ER, Gates RD (2013) The distribution of the thermally tolerant symbiont lineage (Symbiodinium clade D) in corals from Hawaii: correlations with host and the history of ocean thermal stress. Ecol Evol 3:1317–1329PubMedPubMedCentralCrossRefGoogle Scholar
  100. Stat M, Yost DM, Gates RD (2015) Geographic structure and host specificity shape the community composition of symbiotic dinoflagellates in corals from the Northwestern Hawaiian Islands. Coral Reefs 34:1075–1086CrossRefGoogle Scholar
  101. Stimson J, Kinzie RA III (1991) The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J Exp Mar Biol Ecol 153:63–74CrossRefGoogle Scholar
  102. Sugumaran M (2002) Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigment Cell Res 15:2–9PubMedCrossRefGoogle Scholar
  103. Sutton A, Sabine C, De Carlo E, Musielewicz S, Maenner S, Dietrich C, Bott R, Osborne J (2016) Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from time series observations using Bubble type equilibrator for autonomous carbon dioxide (CO2) measurement, Carbon dioxide (CO2) gas analyzer and other instruments from MOORING_CRIMP2_158W_21N in the Kaneohe Bay and North Pacific Ocean from 2008-06-11 to 2015-05-13 (NCEI Accession 0157415). Version 2.2. NOAA National Centers for Environmental Information. Dataset. Accessed March 2017Google Scholar
  104. Tanner CA, Burnett LE, Burnett KG (2006) The effects of hypoxia and pH on phenoloxidase activity in the Atlantic blue crab, Callinectes sapidus. Comp Biochem Physiol A Mol Integr Physiol 144:218–223PubMedCrossRefGoogle Scholar
  105. Torda G, Donelson JM, Aranda M, Barshis DJ, Bay L, Berumen ML, Bourne DG, Cantin N, Foret S, Matz M, Miller DJ, Moya A, Putnam HM, Ravasi T, van Oppen MJH, Thurber RV, Vidal-Dupiol J, Voolstra CR, Watson S-A, Whitelaw E, Willis BL, Munday PL (2017) Rapid adaptive responses to climate change in corals. Nat Clim Chang 7:627–636CrossRefGoogle Scholar
  106. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31CrossRefGoogle Scholar
  107. Venables WN, Ripley BD (2002) Modern applied statistics with S-PLUS, 4th edn. Springer, New YorkCrossRefGoogle Scholar
  108. Vijayan V, Jasmin C, Anas A, Kuttan PS, Vinothkumar S, Subrayan PP, Nair S (2017) Sponge-associated bacteria produce non-cytotoxic melanin which protects animal cells from photo-toxicity. Appl Biochem Biotechnol 183:396–411PubMedCrossRefGoogle Scholar
  109. Wall CB, Fan T-Y, Edmunds PJ (2014) Ocean acidification has no effect on thermal bleaching in the coral Seriatopora caliendrum. Coral Reefs 33:119–130CrossRefGoogle Scholar
  110. Wall CB, Mason RAB, Ellis WR, Cunning R, Gates RD (2017) Elevated pCO2 affects tissue biomass composition, but not calcification, in a reef coral under two light regimes. R Soc Open Sci 4:170683PubMedPubMedCentralCrossRefGoogle Scholar
  111. Wangpraseurt D, Larkum AWD, Ralph PJ, Kühl M (2012) Light gradients and optical microniches in coral tissues. Front Microbiol 3:316PubMedPubMedCentralCrossRefGoogle Scholar
  112. Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012PubMedPubMedCentralCrossRefGoogle Scholar
  113. Warner ME, Lesser MP, Ralph PJ (2010) Chlorophyll fluorescence in reef building corals. In: Suggett DJ, Borowitzka MA, Prášil O (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp 209–222CrossRefGoogle Scholar
  114. Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066PubMedCrossRefGoogle Scholar
  115. Wham DC, Ning G, LaJeunesse TC (2017) Symbiodinium glynnii sp. nov., a species of stress-tolerant symbiotic dinoflagellates from pocilloporid and montiporid corals in the Pacific Ocean. Phycologia 56:396–409CrossRefGoogle Scholar
  116. Wiedenmann J, D’Angelo C, Smith EG, Hunt AN, Legiret F-E, Postle AD, Achterberg EP (2012) Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat Clim Chang 3:160–164CrossRefGoogle Scholar
  117. Zeebe RE (2012) History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annu Rev Earth Planet Sci 40:141–165CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Hawai‘i at Mānoa, Hawai‘i Institute of Marine BiologyKaneoheUSA
  2. 2.Department of BiologyUniversity of Texas at ArlingtonArlingtonUSA
  3. 3.Department of Biological SciencesUniversity of Rhode IslandKingstonUSA

Personalised recommendations