Marine Biology

, 165:60 | Cite as

Biophysical drivers of coral trophic depth zonation

  • Gareth J. WilliamsEmail author
  • Stuart A. Sandin
  • Brian J. Zgliczynski
  • Michael D. Fox
  • Jamison M. Gove
  • Justin S. Rogers
  • Kathryn A. Furby
  • Aaron C. Hartmann
  • Zachary R. Caldwell
  • Nichole N. Price
  • Jennifer E. Smith
Original paper


Depth is used often as a proxy for gradients in energetic resources on coral reefs and for predicting patterns of community energy use. With increasing depth, loss of light can lead to a reduced reliance on autotrophy and an increased reliance on heterotrophy by mixotrophic corals. However, the generality of such trophic zonation varies across contexts. By combining high-resolution oceanographic measurements with isotopic analyses (δ13C, δ15N) of multiple producer and consumer levels across depths (10–30 m) at a central Pacific oceanic atoll, we show trophic zonation in mixotrophic corals can be both present and absent within the same reef system. Deep-water internal waves that deliver cool particulate-rich waters to shallow reefs occurred across all sites (2.5–5.6 events week−1 at 30 m) but the majority of events remained depth-restricted (4.3–9.7% recorded at 30 m propagated to 10 m). In the absence of other particulate delivery, mixotrophs increased their relative degree of heterotrophy with increasing depth. However, where relatively long-lasting downwelling events (1.4–3.3 times the duration of any other site) occurred simultaneously, mixotrophs displayed elevated and consistent degrees of heterotrophy regardless of depth. Importantly, these long-lasting surface pulses were of a lagoonal origin, an area of rich heterotrophic resource supply. Under such circumstances, we hypothesize heterotrophic resource abundance loses its direct linkage with depth and, with resources readily available at all depths, trophic zonation is no longer present. Our results show that fine-scale intra-island hydrographic regimes and hydrodynamic connectivity between reef habitats contribute to explaining the context specific nature of coral trophic depth zonation in shallow reef ecosystems.



Permission to work within Palmyra Atoll National Wildlife Refuge was granted by a Special Use Permit (SUP 12533-13025) issued by the U.S. Fish and Wildlife Service (USFWS). We thank the USFWS and The Nature Conservancy for providing logistical support, Stephen Monismith, Robert Dunbar and David Koweek for providing additional temperature data, and Mattias Green for constructing Fig. 1b. Scripps Institution of Oceanography and Stanford University are members of the Palmyra Atoll Research Consortium (PARC). This is PARC publication number PARC-TBD

Author contributions

GJW and SAS conceived the project; GJW led the writing with SAS; GJW, SAS, BJZ, KAF, JMG, JSR, ZRC, NNP and JES collected data; GJW, MDF, KAF and ACH performed the lab work; GJW, JMG, and JSR analysed the data.

Compliance with ethical standards

Research involving animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

227_2018_3314_MOESM1_ESM.pdf (470 kb)
Supplementary material 1 (PDF 470 kb) (331 kb)
Supplementary material 2 (MOV 330 kb) (3.4 mb)
Supplementary material 3 (MOV 3489 kb) (2.5 mb)
Supplementary material 4 (MOV 2607 kb)


  1. Alamaru A, Loya Y, Brokovich E, Yam R, Shemesh A (2009) Carbon and nitrogen utilization in two species of Red Sea corals along a depth gradient: insights from stable isotope analysis of total organic material and lipids. Geochim Cosmochim Acta 73:5333–5342CrossRefGoogle Scholar
  2. Alldredge A, King J (2009) Near-surface enrichment of zooplankton over a shallow back reef: implications for coral reef food webs. Coral Reefs 28:895–908CrossRefGoogle Scholar
  3. Altabet MA (2001) Nitrogen isotopic evidence for micronutrient control of fractional NO3-utilization in the equatorial Pacific. Limnol Oceanogr 46:368–380CrossRefGoogle Scholar
  4. Anthony KRN (2006) Enhanced energy status of corals on coastal, high-turbidity reefs. Mar Ecol Prog Ser 319:111–116CrossRefGoogle Scholar
  5. Atkinson MJ, Bilger RW (1992) Effects of water velocity on phosphate uptake in coral reef-flat communities. Limnol Oceanogr 37:273–279CrossRefGoogle Scholar
  6. Borell EM, Yuliantri AR, Bischof K, Richter C (2008) The effect of heterotrophy on photosynthesis and tissue composition of two scleractinian corals under elevated temperature. J Exp Mar Biol Ecol 364:116–123CrossRefGoogle Scholar
  7. Chauvin A, Denis V, Cuet P (2011) Is the response of coral calcification to seawater acidification related to nutrient loading? Coral Reefs 30:911CrossRefGoogle Scholar
  8. Cohen R, Fong P (2005) Experimental evidence supports the use of δ15 N content of the opportunistic green macroalga Enteromorpha intestinalis (Chlorophyta) to determine nitrogen sources to estuaries. J Phycol 41:287–293CrossRefGoogle Scholar
  9. Connolly SR, Lopez-Yglesias MA, Anthony KRN (2012) Food availability promotes rapid recovery from thermal stress in a scleractinian coral. Coral Reefs 31:951–960CrossRefGoogle Scholar
  10. Davies PS (1991) Effect of daylight variations on the energy budgets of shallow-water corals. Mar Biol 108:137–144CrossRefGoogle Scholar
  11. Fabricius KE, Klumpp DW (1995) Widespread mixotrophy in reef-inhabiting soft corals: the influence of depth, and colony expansion and contraction on photosynthesis. Mar Ecol Prog Ser 125:195–204CrossRefGoogle Scholar
  12. Falkowski PG, Dubinsky Z, Muscatine L, Porter JW (1984) Light and the bioenergetics of a symbiotic coral. Bioscience 34:705–709CrossRefGoogle Scholar
  13. Fong P, Donohoe RM, Zedler JB (1994) Nutrient concentration in tissue of the macroalga Enteromorpha as a function of nutrient history: an experimental evaluation using field microcosms. Mar Ecol Prog Ser 106:273–281CrossRefGoogle Scholar
  14. Friedlander AM, Sandin SA, DeMartini EE, Sala E (2010) Spatial patterns of the structure of reef fish assemblages at a pristine atoll in the central Pacific. Mar Ecol Prog Ser 410:219–231CrossRefGoogle Scholar
  15. Genin A, Jaffe JS, Reef R, Richter C, Franks PJ (2005) Swimming against the flow: a mechanism of zooplankton aggregation. Science 308:860–862CrossRefPubMedGoogle Scholar
  16. Genin A, Monismith SG, Reidenbach MA, Yahel G, Koseff JR (2009) Intense benthic grazing of phytoplankton in a coral reef. Limnol Oceanogr 54:938–951CrossRefGoogle Scholar
  17. Gove JM, Merrifield MA, Brainard RE (2006) Temporal variability of current-driven upwelling at Jarvis Island. J Geophys Res Oceans 111:C12011CrossRefGoogle Scholar
  18. Gove JM, Williams GJ, McManus M, Heron S, Sandin SA, Vetter OJ, Foley D (2013) Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems. PLoS One 8:e61974CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gove JM, Williams GJ, McManus MA, Clark SJ, Ehses JS, Wedding LM (2015) Coral reef benthic regimes exhibit non-linear threshold responses to natural physical drivers. Mar Ecol Prog Ser 522:33–48CrossRefGoogle Scholar
  20. Grottoli AG, Rodrigues LJ, Juarez C (2004) Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar Biol 145:621–631CrossRefGoogle Scholar
  21. Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189CrossRefPubMedGoogle Scholar
  22. Hamner W, Jones M, Carleton J, Hauri I, Williams DM (1988) Zooplankton, planktivorous fish, and water currents on a windward reef face: Great Barrier Reef, Australia. Bull Mar Sci 42:459–479Google Scholar
  23. Hanson KM, Schnarr EL, Leichter JJ (2016) Non-random feeding enhances the contribution of oceanic zooplankton to the diet of the planktivorous coral reef fish Dascyllus flavicaudus. Mar Biol 163:1–13CrossRefGoogle Scholar
  24. Heikoop JM, Dunn JJ, Risk MJ, Sandeman IM, Schwarcz HP, Waltho N (1998) Relationship between light and the δ15N of coral tissue: examples from Jamaica and Zanzibar. Limnol Oceanogr 43:909–920CrossRefGoogle Scholar
  25. Hobson ES (1991) Trophic relationships of fishes specialized to feed on zooplankters above coral reefs. The ecology of fishes on coral reefs. Academic Press, San Diego, pp 69–95Google Scholar
  26. Hoogenboom M, Rottier C, Sikorski S, Ferrier-Pagès C (2015) Among-species variation in the energy budgets of reef-building corals: scaling from coral polyps to communities. J Exp Biol 218:3866–3877CrossRefPubMedGoogle Scholar
  27. Houlbreque F, Ferrier-Pagès C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev Camb Philos Soc 84:1–17CrossRefPubMedGoogle Scholar
  28. Hughes AD, Grottoli AG, Pease TK, Matsui Y (2010) Acquisition and assimilation of carbon in non-bleached and bleached corals. Mar Ecol Prog Ser 420:91–101CrossRefGoogle Scholar
  29. Kübler JE, Raven JA (1995) The interaction between inorganic carbon acquisition and light supply in Palmaria palmata (Rhodophyta). J Phycol 31:369–375CrossRefGoogle Scholar
  30. Leichter JJ, Wing SR, Miller SL, Denny MW (1996) Pulsed delivery of subthermocline water to Conch Reef (Florida Keys) by internal tidal bores. Limnol Oceanogr 41:1490–1501CrossRefGoogle Scholar
  31. Leichter JJ, Shellenbarger G, Salvatore J, Wing SR (1998) Breaking internal waves on a Florida (USA) coral reef: a plankton pump at work? Mar Ecol Prog Ser 166:83–97CrossRefGoogle Scholar
  32. Leichter JJ, Stewart HL, Miller SL (2003) Episodic nutrient transport to Florida coral reefs. Limnol Oceanogr 48:1394–1407CrossRefGoogle Scholar
  33. Leichter JJ, Helmuth B, Fischer AM (2006) Variation beneath the surface: quantifying complex thermal environments on coral reefs in the Caribbean, Bahamas and Florida. J Mar Res 64:563–588CrossRefGoogle Scholar
  34. Leichter JJ, Stokes MD, Hench JL, Witting J, Washburn L (2012) The island-scale internal wave climate of Moorea, French Polynesia. J Geophys Res Oceans 117:C6CrossRefGoogle Scholar
  35. Lesser MP, Slattery M, Stat M, Ojimi M, Gates RD, Grottoli A (2010) Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91:990–1003CrossRefPubMedGoogle Scholar
  36. Levas S, Grottoli AG, Schoepf V, Aschaffenburg M, Baumann J, Bauer JE, Warner ME (2016) Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals? Coral Reefs 35:495–506CrossRefGoogle Scholar
  37. Lowe RJ, Falter JL (2015) Oceanic forcing of coral reefs. Ann Rev Mar Sci 7:43–66CrossRefPubMedGoogle Scholar
  38. Marubini F, Davies PS (1996) Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar Biol 127:319–328CrossRefGoogle Scholar
  39. McCauley DJ, DeSalles PA, Young HS, Dunbar RB, Dirzo R, Mills MM, Micheli F (2012) From wing to wing: the persistence of long ecological interaction chains in less-disturbed ecosystems. Sci Rep 2:409CrossRefPubMedPubMedCentralGoogle Scholar
  40. Monismith SG, Genin A, Reidenbach MA, Yahel G, Koseff JR (2006) Thermally driven exchanges between a coral reef and the adjoining ocean. J Phys Oceanogr 36:1332–1347CrossRefGoogle Scholar
  41. Monismith SG, Davis KA, Shellenbarger GG, Hench JL, Nidzieko NJ, Santoro AE, Reidenbach MA, Rosman JH, Holtzman R, Martens CS (2010) Flow effects on benthic grazing on phytoplankton by a Caribbean reef. Limnol Oceanogr 55:1881–1892CrossRefGoogle Scholar
  42. Muscatine L, D’elia C (1978) The uptake, retention, and release of ammonium by reef corals. Limnol Oceanogr 23:725–734CrossRefGoogle Scholar
  43. Muscatine L, Kaplan I (1994) Resource partitioning by reef corals as determined from stable isotope composition II. δ15N of zooxanthellae and animal tissue versus depth. Pac Sci 48:304–312Google Scholar
  44. Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460CrossRefGoogle Scholar
  45. Muscatine L, Porter J, Kaplan I (1989a) Resource partitioning by reef corals as determined from stable isotope composition I. δ13C of zooxanthellae and animal tissue vs depth. Mar Biol 100:185–193CrossRefGoogle Scholar
  46. Muscatine L, Falkowski PG, Dubinsky Z, Cook PA, McCloskey LR (1989b) The effect of external nutrient resources on the population dynamics of zooxanthellae in a reef coral. Proc R Soc B 236:311–324CrossRefGoogle Scholar
  47. Nahon S, Richoux NB, Kolasinski J, Desmalades M, Pages CF, Lecellier G, Planes S, Lecellier VB (2013) Spatial and temporal variations in stable carbon (δ13C) and nitrogen (δ15N) isotopic composition of symbiotic scleractinian corals. PLoS One 8:e81247CrossRefPubMedPubMedCentralGoogle Scholar
  48. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2018) vegan: community ecology package. R package version 2.4-3. Accessed 15 Feb 2018
  49. Palardy JE, Grottoli AG, Matthews KA (2005) Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamanian corals. Mar Ecol Prog Ser 300:79–89CrossRefGoogle Scholar
  50. Palardy JE, Rodrigues LJ, Grottoli AG (2008) The importance of zooplankton to the daily metabolic carbon requirements of healthy and bleached corals at two depths. J Exp Mar Biol Ecol 367:180–188CrossRefGoogle Scholar
  51. Plass-Johnson JG, McQuaid CD, Hill JM (2016) Morphologically similar, coexisting hard corals (Porites lobata and P. solida) display similar trophic isotopic ratios across reefs and depths. Mar Freshw Res 67:671–676CrossRefGoogle Scholar
  52. Reynaud S, Martinez P, Houlbrèque F, Billy I, Allemand D, Ferrier-Pagès C (2009) Effect of light and feeding on the nitrogen isotopic composition of a zooxanthellate coral: role of nitrogen recycling. Mar Ecol Prog Ser 392:103–110CrossRefGoogle Scholar
  53. Roder C, Fillinger L, Jantzen C, Schmidt GM, Khokiattiwong S, Richter C (2010) Trophic response of corals to large amplitude internal waves. Mar Ecol Prog Ser 412:113–128CrossRefGoogle Scholar
  54. Rodrigues LJ, Grottoli AG (2006) Calcification rate and the stable carbon, oxygen, and nitrogen isotopes in the skeleton, host tissue, and zooxanthellae of bleached and recovering Hawaiian corals. Geochim Cosmochim Acta 70:2781–2789CrossRefGoogle Scholar
  55. Rogers JS, Monismith SG, Fringer OB, Koweek DA, Dunbar RB (2017) A coupled wave-hydrodynamic model of an atoll with high friction: mechanisms for flow, connectivity, and ecological implications. Ocean Model Online 110:66–82CrossRefGoogle Scholar
  56. Schoepf V, Grottoli AG, Levas SJ, Aschaffenburg MD, Baumann JH, Matsui Y, Warner ME (2015) Annual coral bleaching and the long-term recovery capacity of coral. Proc R Soc B Biol Sci 282:20151887CrossRefGoogle Scholar
  57. Sevadjian J, McManus M, Benoit-Bird K, Selph K (2012) Shoreward advection of phytoplankton and vertical re-distribution of zooplankton by episodic near-bottom water pulses on an insular shelf: Oahu, Hawaii. Cont Shelf Res 50:1–15CrossRefGoogle Scholar
  58. Simpson JE (1982) Gravity currents in the laboratory, atmosphere, and ocean. Annu Rev Fluid Mech 14:213–234CrossRefGoogle Scholar
  59. Smith JE, Smith CM, Vroom P, Beach KL, Miller S (2004) Nutrient and growth dynamics of Halimeda tuna on Conch Reef, Florida Keys: possible influence of internal tides on nutrient status and physiology. Limnol Oceanogr 49:1923–1936CrossRefGoogle Scholar
  60. Steven ADL, Atkinson MJ (2003) Nutrient uptake by coral-reef microatolls. Coral Reefs 22:197–204CrossRefGoogle Scholar
  61. Storlazzi CD, Field ME, Cheriton OM, Presto MK, Logan JB (2013) Rapid fluctuations in flow and water-column properties in Asan Bay, Guam: implications for selective resilience of coral reefs in warming seas. Coral Reefs 32:949–961CrossRefGoogle Scholar
  62. Swart PK (1983) Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth Sci Rev 19:51–80CrossRefGoogle Scholar
  63. Swart PK, Saied A, Lamb K (2005) Temporal and spatial variation in the δ15 N and δ13C of coral tissue and zooxanthellae in Montastraea faveolata collected from the Florida reef tract. Limnol Oceanogr 50:1049–1058CrossRefGoogle Scholar
  64. Tremblay P, Maguer JF, Grover R, Ferrier-Pagès C (2015) Trophic dynamics of scleractinian corals: stable isotope evidence. J Exp Biol 218:1223–1234CrossRefPubMedGoogle Scholar
  65. Valiela I (1984) Marine ecological processes. Springer, New YorkCrossRefGoogle Scholar
  66. Williams GJ, Smith JE, Conklin EJ, Gove JM, Sala E, Sandin SA (2013) Benthic communities at two remote Pacific coral reefs: effects of reef habitat, depth, and wave energy gradients on spatial patterns. PeerJ 1:e81CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wolanski E, Delesalle B (1995) Upwelling by internal waves, Tahiti, French Polynesia. Cont Shelf Res 15:357–368CrossRefGoogle Scholar
  68. Wyatt AS, Falter JL, Lowe RJ, Humphries S, Waite AM (2012) Oceanographic forcing of nutrient uptake and release over a fringing coral reef. Limnol Oceanogr 57:401–419CrossRefGoogle Scholar
  69. Wyatt AS, Lowe RJ, Humphries S, Waite AM (2013) Particulate nutrient fluxes over a fringing coral reef: source-sink dynamics inferred from carbon to nitrogen ratios and stable isotopes. Limnol Oceanogr 58:409–427CrossRefGoogle Scholar
  70. Wyman KD, Dubinsky Z, Porter JW, Falkowski PG (1987) Light absorption and utilization among hermatypic corals: a study in Jamaica, West Indies. Mar Biol 96:283–292CrossRefGoogle Scholar
  71. Young HS, McCauley DJ, Dunbar RB, Dirzo R (2010) Plants cause ecosystem nutrient depletion via the interruption of bird-derived spatial subsidies. Proc Natl Acad Sci USA 107:2072–2077CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Gareth J. Williams
    • 1
    • 2
    Email author
  • Stuart A. Sandin
    • 2
  • Brian J. Zgliczynski
    • 2
  • Michael D. Fox
    • 2
  • Jamison M. Gove
    • 3
  • Justin S. Rogers
    • 4
  • Kathryn A. Furby
    • 2
  • Aaron C. Hartmann
    • 2
  • Zachary R. Caldwell
    • 5
  • Nichole N. Price
    • 6
  • Jennifer E. Smith
    • 2
  1. 1.School of Ocean SciencesBangor UniversityMenai BridgeUK
  2. 2.Center for Marine Biodiversity and ConservationScripps Institution of OceanographyLa JollaUSA
  3. 3.Ecosystems and Oceanography DivisionNOAA Pacific Islands Fisheries Science CenterHonoluluUSA
  4. 4.Environmental Fluid Mechanics LaboratoryStanford UniversityStanfordUSA
  5. 5.The Nature ConservancyHonoluluUSA
  6. 6.Bigelow Laboratory for Ocean SciencesEast BoothbayUSA

Personalised recommendations