Marine Biology

, 165:16 | Cite as

Anisotropic larval connectivity and metapopulation structure driven by directional oceanic currents in a marine fish targeted by small-scale fisheries

  • Adrian Munguia-Vega
  • S. Guido Marinone
  • David A. Paz-Garcia
  • Alfredo Giron-Nava
  • Tomas Plomozo-Lugo
  • Ollin Gonzalez-Cuellar
  • Amy Hudson Weaver
  • Francisco J. García-Rodriguez
  • Hector Reyes-Bonilla
Original paper


The dispersal during the planktonic larval period is a key feature to understand the metapopulation structure of marine fishes, and is commonly described by four general models: (1) lack of population structure due to extensive larval dispersal; (2) isolation by geographic distance, where larval connectivity decreases with increasing distance between sites in all directions (isotropy); (3) population structure without any clear geographic trend (chaotic); and (4) population structure explained by seascape approaches that explicitly incorporate the spatial and temporal variations in the direction and strength of oceanic currents via oceanographic modeling. We tested the four models in the Pacific red snapper Lutjanus peru, a key commercial species in the Gulf of California (GC), Mexico. We genotyped 15 microsatellite loci in 225 samples collected during 2015–2016 from 8 sites, and contrasted the observed empirical genetic patterns against predictions from each model. We found low but significant levels of population structure among sites. Only the seascape approach was able to significantly explain levels of genetic structure and diversity, but exclusively within spring and summer, suggesting that this period represents the spawning season for L. peru. We showed that in the GC, the strong asymmetry in the oceanic currents causes larval connectivity to show different values when measured in distinct directions (anisotropy). Management tools, including marine reserves, could be more effective if placed upstream of the predominant flow. Managers should consider that oceanographic distances describing the direction and intensity of currents during the spawning period are significant predictors of larval connectivity between sites, as opposed to geographic distances.



We would like to acknowledge Juan Leonardo Lucero Cuevas (Tito), Aaron León, Jose Amador Gutierrez (Pepe), Amairany León, Mariely Alvarez, Jaime de la Toba and Joel Castro for their assistance with acquiring samples in the field. Mariana Walther helped with logistics during the early stage of the project. Geraldine Parra, Alexander Ochoa, Karla Vargas, Jose Francisco Dominguez-Contreras (Borre), and Stacy L. Sotak helped us at various stages during microsatellite genotyping. DAPG received a CONACYT fellowship (250126). This work was funded by The Walton Family Foundation Grant # 2011-1235, The David and Lucile Packard Foundation Grants #2013-39359, #2013-39400, and #2015-62798, and Fondo Institucional CONACYT-Fronteras de la Ciencia (Project 26/2016).

Compliance with ethical standards

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Necessary permits were obtained prior to conducting the research.

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

Supplementary material 1 (M4V 1558 kb)

227_2017_3267_MOESM2_ESM.pdf (6 mb)
Supplementary material 2 (PDF 6114 kb)


  1. Aburto-Oropeza O, Dominguez-Guerrero I, Cota-Nieto J, Plomozo-Lugo T (2009) Recruitment and ontogenetic habitat shifts of the yellow snapper (Lutjanus argentiventris) in the Gulf of California. Mar Biol 156:2461–2472. CrossRefGoogle Scholar
  2. Almany GR, Connolly SR, Heath DD, Hogan JD, Jones GP, McCook LJ, Mills M, Pressey RL, Williamson DH (2009) Connectivity, biodiversity conservation and the design of marine reserve networks for coral reefs. Coral Reefs 28:339–351. CrossRefGoogle Scholar
  3. Almany GR, Planes S, Thorrold SR, Berumen ML, Bode M, Saenz-Agudelo P, Bonin MC, Frisch AJ, Harrison HB, Messmer V, Nanninga GB, Priest MA, Srinivasan M, Sinclair-Taylor T, Williamson DH, Jones JP (2017) Larval fish dispersal in a coral-reef seascape. Nat Ecol Evol 1:0148. CrossRefGoogle Scholar
  4. Amos W, Hoffman JI, Frodsham A, Zhang L, Best S, Hill AVS (2007) Automated binning of microsatellite alleles: problems and solutions. Mol Ecol Notes 7:10–14. CrossRefGoogle Scholar
  5. Backhaus JO (1985) A three-dimensional model for the simulation of the shelf sea dynamics. Dtsch Hydrogr 38:165–187CrossRefGoogle Scholar
  6. Barbosa-Ortega WA, Rivera-Camacho AR, Avila-Poveda OH, Ceballos-Vázquez BP, Arellano-Martínez M (2015) Biología reproductiva de Lutjanus peru y Lutjanus argentiventris (Perciformes: Lutjanidae) en la costa sur-occidental del Golfo de California. IPN-CICIMAR., La Paz, B.C.SGoogle Scholar
  7. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: International AAAI conference on weblogs and social media. AAAI Press, San Jose, CaliforniaGoogle Scholar
  8. Beerli P (2009) How to use migrate o why are markov chain Monte Carlo programs difficult to use? In: Bertorelle G, Bruford MW, Hauffe HC, Rizzoli A, Vernesi C (eds) Population genetics for animal conservation. Cambridge University Press, Cambridge, pp 42–79CrossRefGoogle Scholar
  9. Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185:313–326. CrossRefGoogle Scholar
  10. Beldade R, Jackson AM, Cudney-Bueno R, Raimondi PT, Bernardi G (2014) Genetic structure among spawning aggregations of the gulf coney Hyporthodus acanthistius. Marine Ecol Prog Ser 499:193–201. CrossRefGoogle Scholar
  11. Benjamini BY, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188CrossRefGoogle Scholar
  12. Burgess SC, Treml EA, Marshall DJ (2012) How do dispersal costs and habitat selection influence realized population connectivity? Ecol 93:1378–1387. CrossRefGoogle Scholar
  13. Burgess SC, Nickols KJ, Griesemer CD, Barnett LAK, Dedrick AG, Satterthwaite EV, Yamane L, Morgan SG, White JW, Botsford LW (2014) Beyond connectivity: how empirical methods can quantify population persistence to improve marine protected area design. Ecol Appl 24:257–270. CrossRefGoogle Scholar
  14. Christie MR, Johnson DW, Stallings CD, Hixon MA (2010) Self-recruitment and sweepstakes reproduction amid extensive gene flow in a coral-reef fish. Mol Ecol 19:1042–1057. CrossRefGoogle Scholar
  15. Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Annu Rev Mar Sci 1:443–466. CrossRefGoogle Scholar
  16. Cowen RK, Lwiza KMM, Sponaugle S, Paris BC, Olson DB (2000) Connectivity of marine populations: open or closed? Science 287:857–859. CrossRefGoogle Scholar
  17. D’Aloia CC, Bogdanowicz SM, Francis RK, Majoris JE, Harrison RG, Buston PM (2015) Patterns, causes, and consequences of marine larval dispersal. Proc Natl Acad Sci USA 112:13940–13945. CrossRefGoogle Scholar
  18. Diaz-Uribe JG, Chavez EA, Elorduy-Garay JF (2004) Assessment of the Pacific red snapper (Lutjanus peru) fishery in the southwestern Gulf of California. Cienc Mar 30:561–574CrossRefGoogle Scholar
  19. Dubois M, Rossi V, Ser-Giacomi E, Arnaud-Haond S, López C, Hernández-García E (2016) Linking basin-scale connectivity, oceanography and population dynamics for the conservation and management of marine ecosystems. Glob Ecol Biogeogr 25:503–515. CrossRefGoogle Scholar
  20. Dyer RJ (2009) GeneticStudio: a suite of programs for spatial analysis of genetic-marker data. Mol Ecol Resour 9:110–113. CrossRefGoogle Scholar
  21. Dyer RJ (2015) Population graphs and landscape genetics. Annu Rev Ecol Syst 46:327–342. CrossRefGoogle Scholar
  22. Eldon B, Riquet F, Yearsley J, Jollivet D, Broquet T (2016) Current hypotheses to explain genetic chaos under the sea. Curr Zool 62:551–566. CrossRefGoogle Scholar
  23. Erisman B, Mascarenas I, Paredes G, Sadovy de Mitcheson Y, Aburto-Oropeza O, Hastings P (2010) Seasonal, annual, and long-term trends in commercial fisheries for aggregating reef fishes in the Gulf of California, Mexico. Fish Res 106:279–288. CrossRefGoogle Scholar
  24. Galindo HM, Olson DB, Palumbi SR (2006) Seascape genetics: a coupled oceanographic-genetic model predicts population structure of Caribbean corals. Curr Biol 16:1622–1626. CrossRefGoogle Scholar
  25. Green AL, Fernandes L, Almany G, Abesamis R, McLeod E, Aliño PM, White AT, Salm RV, Tanzer J, Pressey RL (2014) Designing marine reserves for fisheries management, biodiversity conservation, and climate change adaptation. Coast Manag 42:143–159. CrossRefGoogle Scholar
  26. Green AL, Maypa AP, Almany GR, Rhodes KL, Weeks R, Abesamis RA, Gleason MG, Mumby PJ, White AT (2015) Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol Rev Camb Philos Soc 90:1215–1247. CrossRefGoogle Scholar
  27. Hedgecock D (2010) Determining parentage and relatedness from genetic markers sheds light on patterns of marine larval dispersal. Mol Ecol 19:845–847. CrossRefGoogle Scholar
  28. Hedgecock D, Pudovkin AI (2011) Sweepstakes reproductive success in highly fecund marine fish and shellfish: a review and commentary. Bull Mar Sci 87:971–1002. CrossRefGoogle Scholar
  29. Hedgecock D, Barber PH, Edmands S (2007) Genetic approaches to measuring connectivity. Oceanography 20:70–79CrossRefGoogle Scholar
  30. Iacchei M, Ben-Horin T, Selkoe KA, Bird CE, Garcia-Rodriguez FJ, Toonen RJ (2013) Combined analyses of kinship and FST suggest potential drivers of chaotic genetic patchiness in high gene-flow populations. Mol Ecol 22:3476–3494. CrossRefGoogle Scholar
  31. Irisson JO, Paris CB, Leis JM, Yerman MN (2015) With a little help from my friends: group orientation by larvae of a coral reef fish. PLoS One 10:e0144060. CrossRefGoogle Scholar
  32. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13. CrossRefGoogle Scholar
  33. Johnson MS, Black R (1982) Chaotic genetic patchiness in an intertidal limpet, Siphonaria sp. Mar Biol 70:157–164CrossRefGoogle Scholar
  34. Johnson MS, Black R (1984) Pattern beneath the chaos: the effect of recruitment on genetic patchiness in an intertidal limpet. Evolution 38:1371–1383CrossRefGoogle Scholar
  35. Jones GP, Planes S, Thorrold SR (2005) Coral reef fish larvae settle close to home. Curr Biol 15:1314–1318. CrossRefGoogle Scholar
  36. Jost L (2008) Gst and its relatives do not measure differentiation. Mol Ecol 17:4015–4026. CrossRefGoogle Scholar
  37. Kalinowski ST (2005) HP-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189. CrossRefGoogle Scholar
  38. Kool JT, Paris CB, Barber PH, Cowen RK (2011) Connectivity and the development of population genetic structure in Indo-West Pacific coral reef communities. Glob Ecol Biogeogr 20:695–706. CrossRefGoogle Scholar
  39. Leis JM, Paris CB, Irisson JO, Yerman MN, Siebeck UE (2014) Orientation of fish larvae in situ is consistent among locations, years and methods, but varies with time of day. Mar Ecol Prog Ser 505:193–208. CrossRefGoogle Scholar
  40. Lodeiros C, Soria G, Valentich-Scott P, Munguía-Vega A, Cabrera JS, Cudney-Bueno R, Loor A, Márquez A, Sonnenholzner S (2016) Spondylids of Eastern Pacific Ocean. J Shellfish Res 35:279–293. CrossRefGoogle Scholar
  41. Luiz OJ, Allen AP, Robertson DR, Floeter SR, Kulbicki M, Vigliola L, Becheler R, Madin JS (2013) Adult and larval traits as determinants of geographic range size among tropical reef fishes. Proc Natl Acad Sci USA 110:16498–16502. CrossRefGoogle Scholar
  42. Marinone SG (2003) A three-dimensional model of the mean and seasonal circulation of the Gulf of California. J Geophys Res 108:1–27. CrossRefGoogle Scholar
  43. Marinone SG (2006) A numerical simulation of the two- and three-dimensional Lagrangian circulation in the northern Gulf of California. Estuar Coast Shelf Sci 68:93–100. CrossRefGoogle Scholar
  44. Marinone SG (2008) On the three-dimensional numerical modeling of the deep circulation around Ángel de la Guarda Island in the Gulf of California. Estuar Coast Shelf Sci 80:430–434. CrossRefGoogle Scholar
  45. Marinone SG (2012) Seasonal surface connectivity in the Gulf of California. Estuar Coast Shelf Sci 100:133–141. CrossRefGoogle Scholar
  46. Marinone SG, Ulloa M, Paressierra A, Lavin M, Cudneybueno R (2008) Connectivity in the northern Gulf of California from particle trackingin a three-dimensional numerical model. J Mar Syst 71:149–158. CrossRefGoogle Scholar
  47. Marinone SG, Gonzalez J, Figueroa J (2009) Prediction of currents and sea surface elevation in the Gulf of California from tidal to seasonal scales. Env Model Softw 24:140–143. CrossRefGoogle Scholar
  48. Marinone SG, Lavín MF, Parés-Sierra A (2011) A quantitative characterization of the seasonal Lagrangian circulation of the Gulf of California from a three-dimensional numerical model. Cont Shelf Res 31:1420–1426. CrossRefGoogle Scholar
  49. Marquez-Farias F, Zamora-Garcia OG (2016) Informe tecnico del analisis pesquero del corredor San Cosme-Punta Coyote, Baja California Sur, en el periodo 2011–2016. Sociedad de Historia Natural NIPARAJA A.CGoogle Scholar
  50. Meirmans PG, Van Tienderen PH (2004) Genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794. CrossRefGoogle Scholar
  51. Metaxas A, Saunders M (2009) Quantifying the “bio-” components in biophysical models of larval transport in marine benthic invertebrates: advances and pitfalls. Biol Bull 216:257–272. CrossRefGoogle Scholar
  52. Munguia-Vega A, Jackson A, Marinone SG, Erisman B, Moreno-Baez M, Giron A, Pfister T, Aburto-Oropeza O, Torre J (2014) Asymmetric connectivity of spawning aggregations of a commercially important marine fish using a multidisciplinary approach. PeerJ 2:e511. CrossRefGoogle Scholar
  53. Munguia-Vega A, Leyva-Valencia I, Lluch-Cota DB, Cruz-Hernández P (2015) Genetic structure of cortes geoduck clam Panopea globosa Dall 1898 from the Mexican Northwest. J Shellfish Res 34:153–161. CrossRefGoogle Scholar
  54. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256CrossRefGoogle Scholar
  55. Nichols JT, Murphy RC (1922) On a collection of marine fishes from Peru. Bull Amer Mus Nat Hist 46:501–506Google Scholar
  56. Nickols KJ, White JW, Largier JL, Gaylord B (2015) Marine population connectivity: reconciling large-scale dispersal and high self-retention. Am Nat 185:196–211. CrossRefGoogle Scholar
  57. Ottmann D, Grorud-Colvert K, Sard NM, Huntington BE, Banks MA, Sponaugle S (2016) Long-term aggregation of larval fish siblings during dispersal along an open coast. Proc Natl Acad Sci USA. Google Scholar
  58. Pascual M, Rives B, Schunter C, Macpherson E (2017) Impact of life history traits on gene flow: a multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS One 12:e0176419. CrossRefGoogle Scholar
  59. Paz-García DA, Munguía-Vega A, Plomozo-Lugo T, Weaver AH (2017) Characterization of 32 microsatellite loci for the Pacific red snapper, Lutjanus peru, through next generation sequencing. Mol Biol Rep 44:251–256. CrossRefGoogle Scholar
  60. Paz-Vinas I, Loot G, Stevens VM, Blanchet S (2015) Evolutionary processes driving spatial patterns of intra-specific genetic diversity in river ecosystems. Mol Ecol 24:4586–4604. CrossRefGoogle Scholar
  61. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinform 28:2537–2539. CrossRefGoogle Scholar
  62. Piñon A, Amezcua F, Duncan N (2009) Reproductive cycle of female yellow snapper Lutjanus argentiventris (Pisces, Actinopterygii, Lutjanidae) in the SW Gulf of California: gonadic stages, spawning seasonality and length at sexual maturity. J Appl Icht 25:18–25. CrossRefGoogle Scholar
  63. Pringle JM, Blakeslee AMH, Byers JE, Roman J (2011) Asymmetric dispersal allows an upstream region to control population structure throughout a species’ range. Proc Natl Acad Sci USA 108:15288–15293. CrossRefGoogle Scholar
  64. Proehl JA, Lynch DR, McGillicuddy DJ, Ledwell JR (2005) Modeling turbulent dispersion on the North Flank of Georges Bank using Lagrangian Particle Methods. Cont Shelf Res 25:875–900. CrossRefGoogle Scholar
  65. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275CrossRefGoogle Scholar
  66. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249CrossRefGoogle Scholar
  67. R-Core-Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Accessed 4 Apr 2017
  68. Rocha-Olivares A, Sandoval-Castillo J (2003) Mitochondrial diversity and genetic structure in allopatric populations of the Pacific red snapper Lutjanus peru. Cienc Mar 29:197–209CrossRefGoogle Scholar
  69. Ryman N, Palm S (2006) POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol 6:600–602. CrossRefGoogle Scholar
  70. Sala E, Aburto-Oropeza O, Paredes G, Parra I, Barrera JC, Dayton PK (2002) A general model for designing networks of marine reserves. Science 298:1991–1993. CrossRefGoogle Scholar
  71. Sala E, Aburto-Oropeza O, Paredes G, Thompson G (2003) Spawning aggregations and reproductive behavior of reef fishes in the Gulf of California. Bull Mar Sci 72:103–121Google Scholar
  72. Sale PF, Hanski I, Kritzer JP (2006) The merging of metapopulation theory and marine ecology: establishing the historical context. In: Kritzer JP, Sale PF (eds) Marine metapopulations. Elsevier, Amsterdam, pp 3–28CrossRefGoogle Scholar
  73. Selkoe KA, Watson JR, White C, Horin TB, Iacchei M, Mitarai S, Siegel DA, Gaines SD, Toonen RJ (2010) Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol Ecol 19:3708–3726. CrossRefGoogle Scholar
  74. Selkoe KA, Gaggiotti OE, Bowen BW, Toonen RJ (2014) Emergent patterns of population genetic structure for a coral reef community. Mol Ecol 23:3064–3079. CrossRefGoogle Scholar
  75. Selkoe KA, D’Aloia CC, Crandall ED, Iacchei M, Liggins L, Puritz JB, von der Heyden S, Toonen RJ (2016) A decade of seascape genetics: contributions to basic and applied marine connectivity. Mar Ecol Prog Ser 554:1–19. CrossRefGoogle Scholar
  76. Soria G, Munguía-Vega A, Marinone SG, Moreno-Báez M, Martínez-Tovar I, Cudney-Bueno R (2012) Linking bio-oceanography and population genetics to assess larval connectivity. Mar Ecol Prog Ser 463:159–175. CrossRefGoogle Scholar
  77. Soria G, Torre-Cosio J, Munguia-Vega A, Marinone SG, Lavín MF, Cinti A, Moreno-Báez M (2014) Dynamic connectivity patterns from an insular marine protected area in the Gulf of California. J Mar Syst 129:248–258. CrossRefGoogle Scholar
  78. Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Roberston J (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57:573–583CrossRefGoogle Scholar
  79. Teske PR, Sandoval-Castillo J, van Sebille E, Waters J, Beheregaray LB (2015) On-shelf larval retention limits population connectivity in a coastal broadcast spawner. Mar Ecol Prog Ser 532:1–12. CrossRefGoogle Scholar
  80. Teske PR, Sandoval-Castillo J, van Sebille E, Waters J, Beheregaray LB (2016) Oceanography promotes self-recruitment in a planktonic larval disperser. Sci Rep 6:34205. CrossRefGoogle Scholar
  81. Treml EA, Halpin PN, Urban DL, Pratson LF (2008) Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation. Landsc Ecol 23:19–36. CrossRefGoogle Scholar
  82. Treml EA, Roberts JJ, Chao Y, Halpin PN, Possingham HP, Riginos C (2012) Reproductive output and duration of the pelagic larval stage determine seascape-wide connectivity of marine populations. Integr Comp Biol 52:525–537. CrossRefGoogle Scholar
  83. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. CrossRefGoogle Scholar
  84. Visser AW (1997) Using random walk models to simulate the vertical distribution of particles in a turbulent water column. Mar Ecol Prog Ser 158:275–281CrossRefGoogle Scholar
  85. Watson W, Brogan MW (1996) Lutjanidae: Snappers. In: Moser HG (ed) The early life stages of fishes in the California current region. CalCOFI Atlas 33. Allen Press, Lawrence, Kansas, pp 977–989Google Scholar
  86. Watson JR, Mitarai S, Siegel DA, Caselle JE, Dong C, McWilliams JC (2010) Realized and potential larval connectivity in the Southern California Bight. Mar Ecol Prog Ser 401:31–48. CrossRefGoogle Scholar
  87. Watson JR, Siegel DA, Kendall BE, Mitarai S, Rassweiller A, Gaines SD (2011) Identifying critical regions in small-world marine metapopulations. Proc Natl Acad Sci USA 108:E907–E913. CrossRefGoogle Scholar
  88. White JW, Botsford LW, Baskett ML, Barnett LAK, Barr RJ, Hastings A (2011) Linking models with monitoring data for assessing performance of no-take marine reserves. Front Ecol Environ 9:390–399. CrossRefGoogle Scholar
  89. Yearsley JM, Viard F, Broquet T (2013) The effect of collective dispersal on the genetic structure of a subdivided population. Evolution 67:1649–1659. CrossRefGoogle Scholar
  90. Zarate-Becerra ME, Espino-Barr E, Garcia-Boa A et al (2014) Huachinango del Pacífico Centro-Sur, costa de Nayarit a Chiapas. In: Belendez-Moreno FJ, Espino-Barr E, Galindo-Cortes G, Gaspar-Dillanes MT, Huidobro-Campos L, Morales-Bojorquez E (eds) Sustentabilidad y Pesca Responsable en Mexico Evaluacion y Manejo. SAGARPA Instituto Nacional de Pesca, Mexico, D.F., pp 141–175Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Adrian Munguia-Vega
    • 1
    • 2
  • S. Guido Marinone
    • 3
  • David A. Paz-Garcia
    • 4
    • 5
  • Alfredo Giron-Nava
    • 6
  • Tomas Plomozo-Lugo
    • 7
  • Ollin Gonzalez-Cuellar
    • 7
  • Amy Hudson Weaver
    • 7
  • Francisco J. García-Rodriguez
    • 8
  • Hector Reyes-Bonilla
    • 9
  1. 1.PANGAS Science CoordinationComunidad y Biodiversidad A.C.GuaymasMexico
  2. 2.Conservation Genetics Laboratory, School of Natural Resources and the EnvironmentThe University of ArizonaTucsonUSA
  3. 3.Departamento de Oceanografía FísicaCentro de Investigación Científica y de Educación Superior de EnsenadaEnsenadaMexico
  4. 4.Marine Speciation and Molecular Evolution Laboratory, Department of Biological SciencesLouisiana State UniversityBaton RougeUSA
  5. 5.Laboratorio de Necton y Ecología de Arrecifes, Centro de Investigaciones Biológicas del NoroesteInstituto Politécnico NacionalLa PazMexico
  6. 6.Marine Biology Research Division, Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoUSA
  7. 7.Sociedad de Historia Natural Niparajá A.CLa PazMexico
  8. 8.Instituto Politécnico NacionalCentro Interdisciplinario de Ciencias MarinasLa PazMexico
  9. 9.Laboratorio de Sistemas ArrecifalesUniversidad Autónoma de Baja California SurBaja California SurMexico

Personalised recommendations