Marine Biology

, 164:196 | Cite as

Habitat selection of foraging chick-rearing European shags in contrasting marine environments

  • Signe Christensen-Dalsgaard
  • Jenny Mattisson
  • Trine Bekkby
  • Hege Gundersen
  • Roel May
  • Eli Rinde
  • Svein-Håkon Lorentsen
Original paper


Impacts of anthropogenic activities on coastal seabirds might be extensive, especially in the breeding season. Identifying important foraging areas and associated habitats is important for a proper management of seabirds. To identify habitat characteristics driving the selection of foraging sites of breeding European shags Phalacrocorax aristotelis, this study used tracking data (GPS- and TDR-loggers), from 282 individual birds comprising 905 foraging trips and 27,303 dives with known locations, to create habitat selection models. To explore possible effects of regional differences in habitat on foraging behavior, the study was performed at two Norwegian colonies, Sklinna in the Norwegian Sea (65°N, 11°E) and Hornøya in the Barents Sea (70°N, 31°E), with distinct differences in seascape structure and habitat availability. Shags at Sklinna foraged further away from the colony than those at Hornøya but diving depth and duration were similar at the two colonies. In both colonies, sea depth was an important predictor of habitats selected by chick-rearing shags during foraging, with birds preferring shallow depths. At Sklinna, shags also selected for flat areas with high probability of kelp forest occurrence. There was no difference in trip length and duration between sexes, but males dived deeper than females in both colonies. This suggests that males and females might utilize different microhabitats within the same foraging area. The study discusses the application of habitat selection modeling to identify important foraging areas for coastal seabirds, and how this may contribute to the management, conservation and assessment of impacts of human activities.



We would like to thank all field assistants at Sklinna and Hornøya for invaluable help. We also thank R. Barrett for valuable comments on earlier drafts of the manuscript, and S.P. Luque for valuable help with the DiveMove analysis. The study was funded through SEAPOP (, CEDREN (, the Norwegian Environment Agency, the Norwegian Water Resources and Energy Directorate and the Norwegian Institute for Nature Research.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. The study was approved by the Norwegian Animal Research Authority (FOTS ID: 3238, 5148 and 8616). This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

227_2017_3227_MOESM1_ESM.pdf (1 mb)
Supplementary material 1 (PDF 1026 kb)


  1. Andersen JM, Wiersma YF, Stenson GB, Hammill MO, Rosing-Asvid A, Skern-Mauritzen M (2012) Habitat selection by hooded seals (Cystophora cristata) in the Northwest Atlantic Ocean. ICES J Mar Sci 69:1–13. doi: 10.1093/icesjms/fss133 CrossRefGoogle Scholar
  2. Barrett RT (1991) Shags (Phalacrocorax aristotelis L.) as potential samplers of juvenile saithe Pollachius virens (L.) stocks in northern Norway. Sarsia 76:153–156. doi: 10.1080/00364827.1991.10413470 CrossRefGoogle Scholar
  3. Barrett RT, Furness RW (1990) The prey and diving depths of seabirds on Hornøya, North Norway after a decrease in the Barents Sea Capelin stocks. Ornis Scand 21:179–186. doi: 10.2307/3676777 CrossRefGoogle Scholar
  4. Barrett RT, Røv N, Loen J, Montevecchi WA (1990) Diets of shags Phalacrocorax aristotelis and cormorants P. carbo in Norway and possible implications for gadoid stock recruitment. Mar Ecol Prog Ser 66:205–218CrossRefGoogle Scholar
  5. Bates D, Mächler M, Bolker Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. doi: 10.18637/jss.v067.i01 CrossRefGoogle Scholar
  6. Bekkby T, Erikstad L, Bakkestuen V, Bjørge A (2002) A landscape ecological approach to coastal zone applications. Sarsia 87:396–408. doi: 10.1080/0036482021000155845 CrossRefGoogle Scholar
  7. Bekkby T, Rinde E, Erikstad L, Bakkestuen V (2009a) Spatial predictive distribution modelling of the kelp species Laminaria hyperborea. ICES J Mar Sci 66:2106–2115. doi: 10.1093/icesjms/fsp195 CrossRefGoogle Scholar
  8. Bekkby T, Moy F, Kroglund T, Gitmark J, Walday M, Rinde E, Norderhaug KM (2009b) Identifying rocky seabed using GIS modelled predictor variables. Mar Geod 32:379–390. doi: 10.1080/01490410903297816 CrossRefGoogle Scholar
  9. Bekkby T, Moy F, Olsen H, Rinde E, Bodvin T, Bøe R, Steen H, Grefsrud ES, Espeland SSH, Pedersen A, Jørgensen NM (2013) The Norwegian Programme for mapping of marine habitats – providing knowledge and maps for ICZMP. In: Moksness E, Dahl E, Støttrup J (ed) Global challenges in integrated coastal zone management, Wiley-Blackwell. ISBN 978-0-470-65756-0Google Scholar
  10. Birdlife International (2010) Marine Important Bird Areas toolkit: standardised techniques for identifying priority sites for conservation of seabirds at sea. Birdlife International, CambridgeGoogle Scholar
  11. Bivand RS, Pebesma E, Gomez-Rubio V (2013) Applied spatial data analysis with R, Second edition. Springer, NY.,
  12. Bjørge A, Bekkby T, Bryant E (2002) Summer home range and habitat selection of harbour seal (Phoca vitulina) pups. Mar Mamm Sci 18:438–454. doi: 10.1111/j.1748-7692.2002.tb01047.x CrossRefGoogle Scholar
  13. Bogdanova MI, Wanless S, Harris MP, Lindström J, Butler A, Newell MA, Sato K, Watanuki Y, Daunt F (2014) Among-year and within-population variation in foraging distribution of European shags Phalacrocorax aristotelis over two decades: implications for marine spatial planning. Biol Conserv 170:292–299. doi: 10.1016/j.biocon.2013.12.025 CrossRefGoogle Scholar
  14. Boyd C, Castillo R, Hunt GL Jr, Punt AE, VanBlaricom GR, Weimerskirch H, Bertrand S (2015) Predictive modelling of habitat selection by marine predators with respect to the abundance and depth distribution of pelagic prey. J Anim Ecol 84:1575–1588. doi: 10.1111/1365-2656.12409 CrossRefGoogle Scholar
  15. Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioural ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65(1):23–35. doi: 10.1007/s00265-010-1029-6 CrossRefGoogle Scholar
  16. Casaux R, Favero M, Silva P, Baroni A (2001) Sex differences in diving depths and diet of Antarctic shags at the South Shetland Islands. J F Ornithol 72:22–29CrossRefGoogle Scholar
  17. Cook TR, Lescröel A, Cherel Y, Kato A, Bost C-A (2013) Can foraging ecology drive the evolution of body size in a diving endotherm? PLoS One 8(2):e56297. doi: 10.1371/journal.pone.0056297 CrossRefGoogle Scholar
  18. Crain CM, Halpern BS, Beck MW, Kappel CV (2009) Understanding and managing human threats to the coastal marine environment. Ann N Y Acad Sci 1162:39–62. doi: 10.1111/j.1749-6632.2009.04496.x CrossRefGoogle Scholar
  19. Cramp S, Simmons KEL (1977) The birds of the Western Palearctic, vol I. Oxford University Press, OxfordGoogle Scholar
  20. Crowder L, Norse E (2008) Essential ecological insights for marine ecosystem-based management and marine spatial planning. Mar Policy 32:772–778CrossRefGoogle Scholar
  21. Daunt F, Bogdanova M, McDonald C, Wanless S (2015) Determining important marine areas used by European shag breeding on the Isle of May that might merit consideration as additional SPAs (2012). JNCC Report No 556. JNCC, PeterboroughGoogle Scholar
  22. Drent RH, Daan S (1980) The prudent parent: energetic adjustments in avian breeding. Ardea 68:225–252. doi: 10.5253/arde.v68.p225 Google Scholar
  23. ESRI (2011) ArcGIS desktop: Release 10. Environmental Systems Research Institute, RedlandsGoogle Scholar
  24. Fauchald P, Anker-Nilssen T, Barrett RT, Bustnes JO, Bårdsen BJ, Christensen-Dalsgaard S, Descamps S, Engen S, Erikstad KE, Hanssen SA, Lorentsen S-H, Moe B, Reiertsen TK, Strøm H, Systad GH (2015) The status and trends of seabirds breeding in Norway and Svalbard. NINA Report 1151. NINA, Trondheim, p 84Google Scholar
  25. Fortin M, Bost C-A, Maes P, Barbraud C (2013) The demography and ecology of the European shag Phalacrocorax aristotelis in Mor Braz, France. Aquat Living Resour 26:179–185. doi: 10.1051/alr/2012041 CrossRefGoogle Scholar
  26. Furness RW, Wade HM, Robins AMC, Masden EA (2012) Assessing the sensitivity of seabird populations to adverse effects from tidal stream turbines and wave energy devices. ICES J Mar Sci 69:1466–1479. doi: 10.1093/icesjms/fss131 CrossRefGoogle Scholar
  27. Furness RW, Wade HM, Masden EA (2013) Assessing vulnerability of marine bird populations to offshore wind farms. J Environ Manag 119:56–66. doi: 10.1016/j.jenvman.2013.01.025 CrossRefGoogle Scholar
  28. Grémillet D, Boulinier T (2009) Spatial ecology and conservation of seabirds facing global climate change: a review. Mar Ecol Prog Ser 391:121–137. doi: 10.3354/meps08212 CrossRefGoogle Scholar
  29. Grémillet D, Lewis S, Drapeau L, van Der Lingen CD, Huggett JA, Coetzee JC, Verheye HM, Daunt F, Wanless S, Ryan PG (2008) Spatial match-mismatch in the Benguela upwelling zone: should we expect chlorophyll and sea-surface temperature to predict marine predator distributions? J App Ecol 45:610–621. doi: 10.1111/j.1365-2664.2007.01447.x CrossRefGoogle Scholar
  30. Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R (2008) A global map of human impact on marine ecosystems. Science 319(5865):948–952. doi: 10.1126/science.1149345 CrossRefGoogle Scholar
  31. Halpern BS, Ebert CM, Kappel CV, Madin EMP, Micheli F, Perry M, Selkoe KA, Walbridge S (2009) Global priority areas for incorporating land–sea connections in marine conservation. Conserv Lett. doi: 10.1111/j.1755-263X.2009.00060.x Google Scholar
  32. Hillersøy G, Lorentsen SH (2012) Annual variation in the diet of breeding European shag (Phalacrocorax aristotelis) in Central Norway. Waterbirds 35:420–429. doi: 10.1675/063.035.0306 CrossRefGoogle Scholar
  33. Kato A, Watanuki Y, Nishiumi I, Kuroki M, Shaughnessy P, Naito Y (2000) Variation in foraging and parental behaviour of king cormorants. Auk 117:718–730. doi: 10.2307/4089596 CrossRefGoogle Scholar
  34. Langton R, Davies IM, Scott BE (2011) Seabird Conservation and tidal stream and wave power generation: information needs for predicting and managing potential impacts. Marine Policy 35:623–630. doi: 10.1016/j.marpol.2011.02.002 CrossRefGoogle Scholar
  35. Lascelles BG, Taylor PR, Miller MGR, Dias MP, Oppel S, Torres L, Hedd A, Le Corre M, Phillips RA, Shaffer SA, Weimerskirch H, Small C (2016) Applying global criteria to tracking data to define important areas for marine conservation. Divers Distrib 22:422–431. doi: 10.1111/ddi.12411 CrossRefGoogle Scholar
  36. Lorentsen SH, Sjøtun K, Grémillet D (2010) Multi-trophic consequences of kelp harvest. Biol Conserv 143:2054–2062. doi: 10.1016/j.biocon.2010.05.013 CrossRefGoogle Scholar
  37. Lorentsen SH, Anker-Nilssen T, Erikstad KE, Røv N (2015) Forage fish abundance is a predictor of timing of breeding and hatching brood size in a coastal seabird. Mar Ecol Prog Ser 519:209–220. doi: 10.3354/meps11100 CrossRefGoogle Scholar
  38. Luque SP (2007) Diving behaviour analysis in R. R News 7(3):8–14Google Scholar
  39. Mehl S (2015). Northeast Arctic saithe. In: Havforskningsrapporten 2015. Fisken og havet, særnr. 1–2015, p 184Google Scholar
  40. Michelot C, Pinaud D, Fortin M, Maes P, Callard B, Leicher M, Barbraud C (2017) Seasonal variation in coastal marine habitat use by the European shag: insights from fine scale habitat selection modelling and diet. Deep-Sea Res II 141:224–236. doi: 10.1016/j.dsr2.2017.04.001 CrossRefGoogle Scholar
  41. Mitchell PI, Newton SF, Ratcliffe N, Dunn TE (2004) Seabird populations of Britain and Ireland. T. & A.D. Poyser, LondonGoogle Scholar
  42. Orians GH, Pearson NE (1979) On the theory of central place foraging. In: Horn DJ, Mitchell RD, Stairs GR (eds) Analysis of ecological systems. The Ohio State University Press, Columbus, pp 154–177Google Scholar
  43. Pebesma EJ, Bivand RS (2005) Classes and methods for spatial data in R. R News 5 (2). http://cran.r-project.ord/doc/Rnews/
  44. Pethon P (1998) Aschehougs store fiskebok. Aschehoug. (In Norwegian), NY.
  45. Quillfeldt P, Schroff S, van Noordwijk HJ, Michalik A, Ludynia K, Masello JF (2011) Flexible foraging behaviour of a sexually dimorphic deabird: large males do not always dive deep. Mar Ecol Prog Ser 428:271–287. doi: 10.3354/meps09058 CrossRefGoogle Scholar
  46. Ratcliffe N, Takahashi A, O’Sullivan C, Adlard S, Trathan P, Harris M, Wanless S (2013) The roles of sex, mass and individual specialisation in partitioning foraging-depth niches of a pursuit-diving predator. PLoS One 8(10):e79107. doi: 10.1371/journal.pone.0079107 CrossRefGoogle Scholar
  47. R Development Core Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  48. Redfern JV, Ferguson MC, Becker EA, Hyrenbach KD, Good C, Barlow J, Kaschner K, Baumgartner MF, Forney KA, Balance LT, Fauchald P, Halpin P, Hamazaki T, Pershing AJ, Qian SS, Read A, Reilly SB, Torres L, Werner F (2006) Techniques for cetacean-habitat modelling. Mar Ecol Prog Ser 310:271–295. doi: 10.3354/meps310271 CrossRefGoogle Scholar
  49. Rinde E, Christie H, Fagerli CW, Bekkby T, Gundersen H, Norderhaug KM, Hjermann DØ (2014) The influence of physical factors on kelp and sea urchin distribution in previously and still grazed areas in the NE Atlantic. PLoS One 9(6):e100222. doi: 10.1371/journal.pone.0100222 CrossRefGoogle Scholar
  50. Sakshaug E, Bjørge A, Gulliksen B, Loeng H, Mehlum F (1994) The ecosystem Barents Sea (In Norwegian). Universitetsforlaget, Oslo. Norwegian title: Økosystem BarentshavetGoogle Scholar
  51. Sato K, Daunt F, Watanuki Y, Takahashi A, Wanless S (2008) A new method to quantify prey acquisition in diving seabirds using wing stroke frequency. J Exp Biol 211:58–65. doi: 10.1242/jeb.009811 CrossRefGoogle Scholar
  52. Skjoldal HR (ed) (2004) The Norwegian Sea ecosystem. Tapir Academic Press, TrondheimGoogle Scholar
  53. Soanes LM, Arnould JPY, Dodd SG, Sumner MD, Green JA (2013) How many seabirds do we need to track to define home-range area? J App Ecol 50:671–679. doi: 10.1111/1365-2664.12069 CrossRefGoogle Scholar
  54. Soanes LM, Arnould JPY, Dodd SG, Milligan G, Green JA (2014) Factors affecting the foraging behaviour of the European shag: implications for seabird tracking studies. Mar Biol 161:1335–1348. doi: 10.1007/s00227-014-2422-x CrossRefGoogle Scholar
  55. Soanes LM, Bright JA, Angel LP, Arnould JPY, Bolton M, Berlincourt M, Lascelles B, Owen E, Simon-Bouhet B, Green JA (2016) Defining marine important bird areas: testing the foraging radius approach. Biol Conserv 196:69–79. doi: 10.1016/j.biocon.2016.02.007 CrossRefGoogle Scholar
  56. van der Kooij J, Scott BE, Mackinson S (2008) The effects of environmental factors on daytime sandeel distribution and abundance on the Dogger Bank. J Sea Res 60:201–209. doi: 10.1016/j.seares.2008.07.003 CrossRefGoogle Scholar
  57. Velando A, Freire J (1999) Intercolony and seasonal differences in the breeding diet of European Shags on the Galician coast (NW Spain). Mar Ecol Prog Ser 188:225–236. doi: 10.3354/meps188225 CrossRefGoogle Scholar
  58. Velando A, Munilla I (2011) Disturbance to a foraging seabird by sea-based tourism: implications for reserve management in marine protected areas. Biol Conserv 144:1167–1174. doi: 10.1016/j.biocon.2011.01.004 CrossRefGoogle Scholar
  59. Wade HM, Masden EA, Jackson AC, Thaxter CB, Burton NHK, Bouten W, Furness RW (2014) Great skua (Stercorarius skua) movements at sea in relation to marine renewable energy developments. Mar Environ Res 101:69–80. doi: 10.1016/j.marenvres.2014.09.003 CrossRefGoogle Scholar
  60. Wakefield ED, Phillips RA, Matthiopoulos J (2009) Quantifying habitat use and preferences of pelagic seabirds using individual movement data: a review. Mar Ecol Prog Ser 391:165–182. doi: 10.3354/meps08203 CrossRefGoogle Scholar
  61. Wanless S, Harris M (1997) Shag. The birds of the Western Palearctic update 1:1–13Google Scholar
  62. Wanless S, Harris MP, Morris JA (1991) Foraging range and feeding locations of shags Phalacrocorax aristotelis during chick rearing. IBIS 133:30–36. doi: 10.1111/j.1474-919X.1991.tb04806.x CrossRefGoogle Scholar
  63. Wanless S, Harris MP, Burger AE, Buckland ST (1997) Use if time-depth recorders for estimating depth and diving performance of European shags. J F Ornithol 68:547–561Google Scholar
  64. Warwick-Evans VC, Atkinson PW, Robinson LA, Green JA (2016) Predictive modelling to identify near-shore fine-scale seabird distributions during the breeding season. PLoS One 11(3):e0150592. doi: 10.1371/journal.pone.0150592 CrossRefGoogle Scholar
  65. Watanuki Y, Daunt F, Takahashi A, Newell M, Wanless S, Sato K, Miyazaki N (2008) Microhabitat use and prey capture of a bottom-feeding top predator, the European shag, shown by camera loggers. Mar Ecol Prog Ser 356:283–293. doi: 10.3354/meps07266 CrossRefGoogle Scholar
  66. Wearmouth VJ, Sims DW (2008) Sexual segregation of marine fish, reptiles, birds and mammals: behaviour patterns, mechanisms and conservation implications. Adv Mar Biol 54:107–170. doi: 10.1016/S0065-2881(08)00002-3 CrossRefGoogle Scholar
  67. Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Statist Soc B 73(1):3–36. doi: 10.1111/j.1467-9868.2010.00749.x CrossRefGoogle Scholar
  68. Wright PJ, Jensen H, Tuck I (2000) The influence of sediment type on the distribution of the lesser sandeel, Ammodytes marinus. J Sea Res 44:243–256. doi: 10.1016/S1385-1101(00)00050-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.Norwegian Institute for Nature Research (NINA)TrondheimNorway
  3. 3.Norwegian Institute for Water Research (NIVA)OsloNorway

Personalised recommendations