Advertisement

Marine Biology

, 164:174 | Cite as

Inter-specific niche partitioning and overlap in albatrosses and petrels: dietary divergence and the role of fishing discards

  • Sebastián Jiménez
  • José C. Xavier
  • Andrés Domingo
  • Alejandro Brazeiro
  • Omar Defeo
  • Martina Viera
  • María Inés Lorenzo
  • Richard A. Phillips
Original paper

Abstract

Although fisheries discards are recognized as a key food source for many seabirds, there have been few thorough assessments of their importance relative to natural prey, and of their influence on the trophic structure of pelagic seabird communities during the non-breeding period. Competition for resources in Procellariiformes appears to be reduced mainly by avoiding spatial overlap, which is supposed to influence diet composition. However, artificial food sources provided by fisheries might relax niche partitioning, increasing trophic niche overlap. Using bycaught birds from pelagic longline fisheries, we combined the conventional diet and stable isotope analyses to assess the importance of fishing discards in the diet of eight species of Procellariiformes. Both methods revealed the high contribution of trawl discards to the non-breeding diet of three neritic species and a moderate contribution in several other species; discards from pelagic and demersal longline fisheries were considerably less important. There was a clear contrast in diets of neritic vs. oceanic species, which are closely related taxonomically, but segregate at sea. Niche partitioning was less clear among neritic species. They showed an unexpectedly high level of diet overlap, presumably related to the large volume of trawl discards available. This is the first study combining the conventional diet and stable isotope analyses to quantify the importance of fishery discards for a community of non-breeding seabirds, and demonstrates how the super-abundance of supplementary food generates high levels of overlap in diets and allows the coexistence of species.

Notes

Acknowledgements

We would like to thank the observers of the Programa Nacional de Observadores de la Flota Atunera Uruguaya (PNOFA). Special thanks to Martin Abreu and Rodrigo Forselledo for their invaluable cooperation in the examination of bycaught seabirds at the laboratory. Thanks also to María Salhi for the help with lipid extraction. We would also like to thank two reviewers and the handling editor for helpful comments. SJ gratefully acknowledges the support by Graham Robertson, the British Embassy (Montevideo), and the Agreement on the Conservation of Albatrosses and Petrels of three study visits to British Antarctic Survey where some of this work was carried out. SIA was partially funded by Dirección Nacional de Recursos Acuáticos (DINARA). JX was supported by the research programs CEPH, SCAR AnT-ERA, SCAR EGBAMM, and ICED and by the Investigator FCT programme (IF/00616/2013). This paper is part of the Ph.D. thesis of SJ, who received a Ph.D. scholarship from Agencia Nacional de Investigación e Innovación (ANII) and a support scholarship for the completion of postgraduate studies from Comisión Académica de Posgrado (CAP).

Author contributions

SJ and RAP determined the basis for the paper, with contributions of AD, OD, and AB. SJ, JX, MV, and MIL undertook the laboratory work. SJ undertook all the analyses. SJ wrote the first draft with the contribution of RAP. JX, OD, AB, and AD contributed to subsequent drafts.

Compliance with ethical standards

Funding

This study was funded in part by Dirección Nacional de Recursos Acuáticos (DINARA), Agencia Nacional de Investigación e Innovación (ANII) and Comisión Académica de Posgrado (CAP).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

227_2017_3205_MOESM1_ESM.pdf (952 kb)
Supplementary material 1 (PDF 952 kb)

References

  1. Anderson O, Small C, Croxall J et al (2011) Global seabird bycatch in longline fisheries. Endanger Species Res 14:91–106CrossRefGoogle Scholar
  2. Arata J, Robertson G, Valencia J, Xavier JC, Moreno CA (2004) Diet of grey-headed albatrosses at the Diego Ramírez Islands, Chile: ecological implications. Antarct Sci 16:263–275CrossRefGoogle Scholar
  3. Barrett RT, Camphuysen KC, Anker-Nilssen T et al (2007) Diet studies of seabirds: a review and recommendations. ICES J Mar Sci 64:1675–1691CrossRefGoogle Scholar
  4. Bodey TW, Ward EJ, Phillips RA, McGill RA, Bearhop S (2014) Species versus guild level differentiation revealed across the annual cycle by isotopic niche examination. J Anim Ecol 83:470–478CrossRefGoogle Scholar
  5. Bond AL, Diamond AW (2011) Recent bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors. Ecol Appl 21:1017–1023CrossRefGoogle Scholar
  6. Bond AL, Jones IL (2009) A practical introduction to stable-isotope analysis for seabird biologists: approaches, cautions and caveats. Mar Ornithol 37:183–188Google Scholar
  7. Brooke MdL (2004) The food consumption of the world’s seabirds. Proc R Soc Lond B Biol Sci 271:S246–S248CrossRefGoogle Scholar
  8. Bugoni L, Mancini PL, Monteiro DS, Nascimento L, Neves TS (2008) Seabird bycatch in the Brazilian pelagic longline fishery and a review of capture rates in the southwestern Atlantic Ocean. Endanger Species Res 5:137–147CrossRefGoogle Scholar
  9. Bugoni L, D’Alba L, Furness R (2009) Marine habitat use of wintering spectacled petrels Procellaria conspicillata, and overlap with longline fishery. Mar Ecol Prog Ser 374:273–285CrossRefGoogle Scholar
  10. Bugoni L, McGill RAR, Furness RW (2010) The importance of pelagic longline fishery discards for a seabird community determined through stable isotope analysis. J Exp Mar Biol Ecol 391:190–200CrossRefGoogle Scholar
  11. Casaux R, Favero M, Barrera-Oro E, Silva P (1995) Feeding trial on an Imperial Cormorant Phalacrocorax atriceps: preliminary results on fish intake and otolith digestion. Mar Ornithol 23:101–106Google Scholar
  12. Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443–453CrossRefGoogle Scholar
  13. Ceia FR, Phillips RA, Ramos JA et al (2012) Short-and long-term consistency in the foraging niche of wandering albatrosses. Mar Biol 159:1581–1591CrossRefGoogle Scholar
  14. Cherel Y, Klages N (1998) A review of the food of albatrosses. In: Robertson G, Gales R (eds) Albatross biology and conservation. Surrey Beatty & Sons, Chipping Norton, pp 113–136Google Scholar
  15. Cherel Y, Weimerskirch H, Trouvé C (2002) Dietary evidence for spatial foraging segregation in sympatric albatrosses (Diomedea spp.) rearing chicks at Iles Nuageuses, Kerguelen. Mar Biol 141:1117–1129CrossRefGoogle Scholar
  16. Cherel Y, Jaeger A, Alderman R et al (2013) A comprehensive isotopic investigation of habitat preferences in nonbreeding albatrosses from the Southern Ocean. Ecography 36:277–286CrossRefGoogle Scholar
  17. Clarke K, Gorley R (2006) PRIMER version 6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  18. Colabuono FI, Vooren CM (2007) Diet of black-browed Thalassarche melanophrys and Atlantic yellow-nosed T. chlororhynchos albatrosses and White-chinned Procellaria aequinoctialis and spectacled P. conspicillata petrels off southern Brazil. Mar Ornithol 35:9–20Google Scholar
  19. Colabuono FI, Barquete V, Taniguchi S, Ryan PG, Montone RC (2014) Stable isotopes of carbon and nitrogen in the study of organochlorine contaminants in albatrosses and petrels. Mar Pollut Bull 83:241–247CrossRefGoogle Scholar
  20. Connan M, McQuaid CD, Bonnevie BT, Smale MJ, Cherel Y, Klages N (2014) Combined stomach content, lipid and stable isotope analyses reveal spatial and trophic partitioning among three sympatric albatrosses from the Southern Ocean. Mar Ecol Prog Ser 497:259–272CrossRefGoogle Scholar
  21. Conners MG, Hazen EL, Costa DP, Shaffer SA (2015) Shadowed by scale: subtle behavioral niche partitioning in two sympatric, tropical breeding albatross species. Mov Ecol 3:1–20CrossRefGoogle Scholar
  22. Crec’Hriou R, Zintzen V, Moore L, Roberts C (2015) Length–weight relationships of 33 fish species from New Zealand. J Appl Ichthyol 31:558–561CrossRefGoogle Scholar
  23. Croxall J, Prince P (1996) Cephalopods as prey. I. Seabirds. Philos Trans R Soc Lond B Biol Sci 351:1023–1043CrossRefGoogle Scholar
  24. Cuthbert RJ, Phillips RA, Ryan PG (2003) Separating the Tristan albatross and the wandering albatross using morphometric measurements. Waterbirds 26:338–344CrossRefGoogle Scholar
  25. Cuthbert R, Hilton G, Ryan P, Tuck GN (2005) At-sea distribution of breeding Tristan albatrosses Diomedea dabbenena and potential interactions with pelagic longline fishing in the South Atlantic Ocean. Biol Conserv 121:345–355CrossRefGoogle Scholar
  26. Favero M, Blanco G, García G et al (2011) Seabird mortality associated with ice trawlers in the Patagonian shelf: effect of discards on the occurrence of interactions with fishing gear. Anim Conserv 14:131–139CrossRefGoogle Scholar
  27. Favero M, Blanco G, Copello S et al (2013) Seabird bycatch in the argentinean demersal longline fishery, 2001–2010. Endanger Species Res 19:187–199CrossRefGoogle Scholar
  28. Figueroa DE, Ehrlich M (2006) Systematics and distribution of leptocephali in the western South Atlantic. Bull Mar Sci 78:227–242Google Scholar
  29. Frere E, Quintana F, Gandini P, Wilson RP (2008) Foraging behaviour and habitat partitioning of two sympatric cormorants in Patagonia, Argentina. Ibis 150:558–564CrossRefGoogle Scholar
  30. Furness BL, Laugksch R, Duffy DC (1984) Cephalopod beaks and studies of seabird diets. Auk 101:619–620Google Scholar
  31. García ML, Jaureguizar AJ, Protogino LC (2010) From fresh water to the slope: fish community ecology in the Río de la Plata and the sea beyond. Lat Am J Aquat Res 38:81–94CrossRefGoogle Scholar
  32. Garthe S (1997) Influence of hydrography, fishing activity, and colony location on summer seabird distribution in the south-eastern North Sea. ICES J Mar Sci 54:566–577CrossRefGoogle Scholar
  33. Garthe S, Camphuysen K, Furness RW (1996) Amounts of discards by commercial fisheries and their significance as food for seabirds in the North Sea. Mar Ecol Prog Ser 136:1–11CrossRefGoogle Scholar
  34. Ginn H, Melville D (1983) Moult in birds. BTO Guide 19. British Trust for Ornithology, TringGoogle Scholar
  35. González-Zevallos D, Yorio P (2011) Consumption of discards and interactions between black-browed albatrosses (Thalassarche melanophrys) and kelp gulls (Larus dominicanus) at trawl fisheries in Golfo San Jorge, Argentina. J Ornithol 152:827–838CrossRefGoogle Scholar
  36. González-Zevallos D, Kuba L, Gosztonyi AE (2010) Estimación de la longitud utilizando relaciones morfométricas de huesos del cráneo, cintura escapular, otolitos y medidas específicas del cuerpo en Merluccius hubbsi en aguas patagónicas. Rev Biol Mar Oceanogr 45:341–345CrossRefGoogle Scholar
  37. Hobson KA, Cherel Y (2006) Isotopic reconstruction of marine food webs using cephalopod beaks: new insight from captively raised Sepia officinalis. Can J Zool 84:766–770CrossRefGoogle Scholar
  38. Huang H-W (2011) Bycatch of high sea longline fisheries and measures taken by Taiwan: actions and challenges. Mar Policy 35:712–720CrossRefGoogle Scholar
  39. Hudson A, Furness R (1988) Utilization of discarded fish by scavenging seabirds behind whitefish trawlers in Shetland. J Zool 215:151–166CrossRefGoogle Scholar
  40. Inger R, Bearhop S (2008) Applications of stable isotope analyses to avian ecology. Ibis 150:447–461CrossRefGoogle Scholar
  41. Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80:595–602CrossRefGoogle Scholar
  42. Jaeger A, Connan M, Richard P, Cherel Y (2010) Use of stable isotopes to quantify seasonal changes of trophic niche and levels of population and individual specialisation in seabirds. Mar Ecol Prog Ser 401:269–277CrossRefGoogle Scholar
  43. Jiménez S, Abreu M, Pons M, Ortiz M, Domingo A (2010) Assessing the impact of the pelagic longline fishery on albatrosses and petrels in the southwest Atlantic. Aquat Living Resour 23:49–64CrossRefGoogle Scholar
  44. Jiménez S, Domingo A, Abreu M, Brazeiro A (2011) Structure of the seabird assemblage associated with pelagic longline vessels in the southwestern Atlantic: implications for bycatch. Endanger Species Res 15:241–254CrossRefGoogle Scholar
  45. Jiménez S, Domingo A, Abreu M, Brazeiro A (2012) Bycatch susceptibility in pelagic longline fisheries: are albatrosses affected by the diving behaviour of medium-sized petrels? Aquat Conserv 22:436–445CrossRefGoogle Scholar
  46. Jiménez S, Phillips RA, Brazeiro A, Defeo O, Domingo A (2014) Bycatch of great albatrosses in pelagic longline fisheries in the southwest Atlantic: contributing factors and implications for management. Biol Conserv 171:9–20CrossRefGoogle Scholar
  47. Jiménez S, Domingo A, Brazeiro A, Defeo O, Phillips RA (2015a) Marine debris ingestion by albatrosses in the southwest Atlantic Ocean. Mar Pollut Bull 96:149–154CrossRefGoogle Scholar
  48. Jiménez S, Marquez A, Abreu M, Forselledo R, Pereira A, Domingo A (2015b) Molecular analysis suggests the occurrence of Shy Albatross in the south-western Atlantic Ocean and its by-catch in longline fishing. Emu 115:58–62Google Scholar
  49. Jiménez S, Pin O, Domingo A (2015c) Plan de Acción Nacional para Reducir la Captura Incidental de Aves Marinas en las Pesquerías Uruguayas. In: Domingo A, Forselledo R, Jiménez S (eds) Revisión de Planes de Acción Nacional para la Conservación de Aves Marinas y Condrictios en las Pesquerías Uruguayas. Montevideo, Dirección Nacional de Recursos Acuáticos, pp 11–79Google Scholar
  50. Jiménez S, Domingo A, Brazeiro A et al (2016) Sex-related variation in the vulnerability of wandering albatrosses to pelagic longline fleets. Anim Conserv 19:281–295CrossRefGoogle Scholar
  51. Karnovsky NJ, Hobson KA, Iverson SJ (2012) From lavage to lipids: estimating diets of seabirds. Mar Ecol Prog Ser 451:263–284CrossRefGoogle Scholar
  52. Karpouzi VS, Watson R, Pauly D (2007) Modelling and mapping resource overlap between seabirds and fisheries on a global scale: a preliminary assessment. Mar Ecol Prog Ser 343:87–99CrossRefGoogle Scholar
  53. Kelleher K (2005) Discards in the world’s marine fisheries: an update. FAO, RomeGoogle Scholar
  54. Lewis R, O’Connell TC, Lewis M, Campagna C, Hoelzel AR (2006) Sex-specific foraging strategies and resource partitioning in the southern elephant seal (Mirounga leonina). Proc R Soc Lond B Biol Sci 273:2901–2907CrossRefGoogle Scholar
  55. Mariano-Jelicich R, Copello S, Pon JPS, Favero M (2014) Contribution of fishery discards to the diet of the Black-browed albatross (Thalassarche melanophris) during the non-breeding season: an assessment through stable isotope analysis. Mar Biol 161:119–129CrossRefGoogle Scholar
  56. Montevecchi WA (2002) Interactions between fisheries and seabirds. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, Boca Raton, pp 527–557Google Scholar
  57. Moore PJ, Bettany SM (2005) Band recoveries of southern royal albatrosses (Diomedea epomophora) from Campbell Island, 1943–2003. Notornis 52:195–205Google Scholar
  58. Morley S, Belchier M (2002) Otolith and body size relationships in bigeye grenadier (Macrourus holotrachys) in CCAMLR subarea 48.3. CCAMLR Sci 9:133–143Google Scholar
  59. Navarro J, Forero MG, González-Solís J, Igual JM, Bécares J, Hobson KA (2009a) Foraging segregation between two closely related shearwaters breeding in sympatry. Biol Lett 5:545–548CrossRefGoogle Scholar
  60. Navarro J, Louzao M, Igual J et al (2009b) Seasonal changes in the diet of a critically endangered seabird and the importance of trawling discards. Mar Biol 156:2571–2578CrossRefGoogle Scholar
  61. Nicholls DG, Robertson CJR, Prince PA, Murray MD, Walker KJ, Elliott GP (2002) Foraging niches of three Diomedea albatrosses. Mar Ecol Prog Ser 231:269–277CrossRefGoogle Scholar
  62. Oro D, Jover L, Ruiz X (1996) Influence of trawling activity on the breeding ecology of a threatened seabird, audouin’s gull Larus audouinii. Mar Ecol Prog Ser 139:19–29CrossRefGoogle Scholar
  63. Oro D, Ruiz X, Jover L, Pedrocchi V, Gonzalez-Solis J (1997) Audouin’s gull diet and adult time budget responses on changes in food availability induced by commercial fisheries. Ibis 139:631–637CrossRefGoogle Scholar
  64. Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS One 5:e9672CrossRefGoogle Scholar
  65. Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269CrossRefGoogle Scholar
  66. Phillips RA, Silk JRD, Croxall JP, Afanasyev V (2006) Year-round distribution of white-chinned petrels from South Georgia: relationships with oceanography and fisheries. Biol Conserv 129:336–347CrossRefGoogle Scholar
  67. Phillips RA, Croxall JP, Silk JRD, Briggs DR (2008) Foraging ecology of albatrosses and petrels from South Georgia: two decades of insights from tracking technologies. Aquat Conserv 17:S6–S21CrossRefGoogle Scholar
  68. Phillips RA, Bearhop S, McGill RAR, Dawson DA (2009) Stable isotopes reveal individual variation in migration strategies and habitat preferences in a suite of seabirds during the nonbreeding period. Oecologia 160:795–806CrossRefGoogle Scholar
  69. Quillfeldt P, Masello JF, Navarro J, Phillips RA (2013) Year-round distribution suggests spatial segregation of two small petrel species in the South Atlantic. J Biogeogr 40:430–441CrossRefGoogle Scholar
  70. Reid K (1995) The diet of Antarctic fur seals (Arctocephalus gazella Peters 1875) during winter at South Georgia. Antarct Sci 7:241–249CrossRefGoogle Scholar
  71. Reid K (1996) A guide to the use of otoliths in the study of predators at South Georgia. British Antarctic Survey, CambridgeGoogle Scholar
  72. Reid TA, Wanless RM, Hilton GM, Phillips RA, Ryan PG (2013) Foraging range and habitat associations of non-breeding Tristan albatrosses: overlap with fisheries and implications for conservation. Endang Species Res 22:39–49CrossRefGoogle Scholar
  73. Rossi-Wongtschowski CLDB, Siliprandi CC, Brenha MR, Gonsales SdA, Santificetur C, Vaz-dos-Santos AM (2014) Atlas of marine bony fish otoliths (Sagittae) of Southeastern-Southern Brazil Part I: gadiformes (Macrouridae, Moridae, Bregmacerotidae, Phycidae and Merlucciidae); Part II: Perciformes (Carangidae, Sciaenidae, Scombridae and Serranidae). Br J Oceanogr 62:1–103CrossRefGoogle Scholar
  74. Ryan P, Moloney C (1988) Effect of trawling on bird and seal distributions in the southern Benguela region. Mar Ecol Prog Ser 45:1–11CrossRefGoogle Scholar
  75. Sacau M, Pierce GJ, Wang J, Arkhipkin AI et al (2005) The spatio-temporal pattern of Argentine shortfin squid Illex argentinus abundance in the southwest Atlantic. Aquat Living Resour 18:361–372CrossRefGoogle Scholar
  76. Saporiti F, Bearhop S, Vales D, Silva L, Zenteno L, Tavares M, Crespo E, Cardona L (2015) Latitudinal changes in the structure of marine food webs in the southwestern Atlantic Ocean. Mar Ecol Prog Ser 538:23–34CrossRefGoogle Scholar
  77. Seco Pon JP (2014) Asociación de aves marinas pelágicas a la flota argentina de arrastre de altura: caracterización integral de las interacciones y desarrollo de una estrategia de conservación para especies con estado de conservación amenazado. PhD dissertation, Universidad Nacional de Mar del Plata, Mar del PlataGoogle Scholar
  78. Spear LB, Ainley DG, Walker WA (2007) Foraging dynamics of seabirds in the eastern tropical Pacific Ocean. Stud Avian Biol 35:1–99Google Scholar
  79. Vaske Júnior T (2011) Are deep-sea cephalopods really common preys for oceanic seabirds? Biota Neotrop 11:177–180CrossRefGoogle Scholar
  80. Volpedo AV, Echeverría DD (2000) Catálogo y claves de otolitos para la identificación de peces del Mar Argentino. Editorial Dunken, Buenos AiresGoogle Scholar
  81. Waessle JA, Lasta CA, Favero M (2003) Otolith morphology and body size relationships for juvenile Sciaenidae in the Río de la Plata estuary (35–36 S). Sci Mar 67:233–240Google Scholar
  82. Waugh SM, Weimerskirch H (2003) Environmental heterogeneity and the evolution of foraging behaviour in long ranging greater albatrosses. Oikos 103:374–384CrossRefGoogle Scholar
  83. Wöhler OC (1997) Crecimiento y mortalidad de la castañeta Cheilodactylus bergi en la zona común de pesca Argentino-Uruguaya. INIDEP Informe Técnico 16, Mar del PlataGoogle Scholar
  84. Xavier JC, Cherel Y (2009) Cephalopod beak guide for the Southern Ocean. British Antarctic Survey, CambridgeGoogle Scholar
  85. Xavier J, Croxall J, Trathan P, Rodhouse P (2003) Inter-annual variation in the cephalopod component of the diet of the wandering albatross, Diomedea exulans, breeding at Bird Island, South Georgia. Mar Biol 142:611–622CrossRefGoogle Scholar
  86. Xavier JC, Trathan PN, Croxall JP, Wood AG, Podestá G, Rodhouse PG (2004) Foraging ecology and interactions with fisheries of wandering albatrosses (Diomedea exulans) breeding at South Georgia. Fish Oceanogr 13:324–344CrossRefGoogle Scholar
  87. Xavier JC, Phillips RA, Cherel Y (2011) Cephalopods in marine predator diet assessments: why identifying upper and lower beaks is important. ICES J Mar Sci 68:1857–1864CrossRefGoogle Scholar
  88. Xavier JC, Cherel Y, Roberts J, Piatkowski U (2013) How do cephalopods become available to seabirds: can fish gut contents from tuna fishing vessels be a major food source of deep-dwelling cephalopods? ICES J Mar Sci 70:46–49CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Sebastián Jiménez
    • 1
    • 2
  • José C. Xavier
    • 2
    • 3
  • Andrés Domingo
    • 1
  • Alejandro Brazeiro
    • 4
  • Omar Defeo
    • 5
  • Martina Viera
    • 6
  • María Inés Lorenzo
    • 6
  • Richard A. Phillips
    • 2
  1. 1.Laboratorio de Recursos PelágicosDirección Nacional de Recursos AcuáticosMontevideoUruguay
  2. 2.British Antarctic SurveyNatural Environment Research CouncilCambridgeUK
  3. 3.MARE-Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, Faculty of Life SciencesUniversity of CoimbraCoimbraPortugal
  4. 4.Instituto de Ecología y Ciencias Ambientales, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  5. 5.UNDECIMAR, Departamento de Ecología & Evolución, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  6. 6.Laboratorio de Edad y CrecimientoDirección Nacional de Recursos AcuáticosMontevideoUruguay

Personalised recommendations