Marine Biology

, 164:171 | Cite as

Diet specialization in a colonial seabird studied using three complementary dietary techniques: effects of intrinsic and extrinsic factors

  • Maëlle Connan
  • Bo T. Bonnevie
  • Christina Hagen
  • Carl D. van der Lingen
  • Christopher McQuaid
Original paper

Abstract

The breeding period has a critical influence on the trophic ecology of seabirds because of the energetic costs of egg production for females, the need to return regularly to the nest to provision chicks, the combined energetic demands of adults and chicks, and potential intraspecific competition if resources around the colony are scarce. The present study combined three dietary methods to investigate if and how these intrinsic and extrinsic factors influenced diet specialization in a colonially breeding seabird, the Cape gannet Morus capensis. The diet of this species was studied from November 2009 to October 2010 at the species’ largest colony at Bird Island, Algoa Bay (33°50′S, 026°17′E; South Africa). Potential prey species were sampled concurrently and dietary tracers (stable isotopes and fatty acids) were analysed. Stomach content and carbon and nitrogen stable isotope analyses indicated that adults relied heavily all year round on small pelagic fish (anchovy and sardine), with prey species composition and individual prey size changing with season, probably reflecting prey biology. Dietary tracers did not show any differences between adult and chick diets. Subtle differences were found between stable isotope values of adult males and females but these were not supported by a Bayesian mixing model. In contrast, differences between the sexes were highlighted in blood fatty acids. The combined results suggest that these were probably related to the cost of egg production rather than to inter-sex differences in diet. Individual diet specialization was observed using stable isotopes in adults. Altogether this dataset indicates the importance of combining complementary methods to understand multiple facets of seabirds’ trophic ecology, and highlights interactions with fisheries that require future monitoring.

Supplementary material

227_2017_3201_MOESM1_ESM.pdf (450 kb)
Supplementary material 1 (PDF 451 kb)

References

  1. Adams NJ, Walter CB (1993) Maximum diving depths of Cape gannets. Condor 95:734–736. doi:10.2307/1369621 CrossRefGoogle Scholar
  2. Adams NJ, Klages NTW (1999) Foraging effort and prey choice in Cape gannets. S Afr J Mar Sci 21:157–163CrossRefGoogle Scholar
  3. Allan EL, Ambrose ST, Richoux NB, Froneman PW (2010) Determining spatial changes in the diet of nearshore suspension-feeders along the South African coastline: stable isotope and fatty acid signatures. Estuar Coast Shelf Sci 87:463–471. doi:10.1016/j.ecss.2010.02.004 CrossRefGoogle Scholar
  4. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x Google Scholar
  5. Angel LP, Berlincourt M, Arnould JPY (2016) Pronounced inter-colony variation in the foraging ecology of Australasian gannets: influence of habitat differences. Mar Ecol Prog Ser 556:261–272. doi:10.3354/meps11845 CrossRefGoogle Scholar
  6. Ashmole NP (1963) The regulation of numbers of tropical oceanic birds. Ibis 103:458–473. doi:10.1111/j.1474-919X.1963.tb06766.x Google Scholar
  7. Awkerman JA, Hobson KA, Anderson DJ (2007) Isotopic (δ15N and δ13C) evidence for intersexual foraging differences and temporal variation in habitat use in waved albatrosses. Can J Zool 85:273–279. doi:10.1139/z06-202 CrossRefGoogle Scholar
  8. Barange M, Hampton I, Roel BA (1999) Trends in the abundance and distribution of anchovy and sardine on the South African continental shelf in the 1990s, deduced from acoustic surveys. S Afr J Mar Sci 21:367–391. doi:10.2989/025776199784126088 CrossRefGoogle Scholar
  9. Barquete V, Strauss V, Ryan PG (2013) Stable isotope turnover in blood and claws: a case study in captive African Penguins. J Exp Mar Biol Ecol 448:121–127. doi:10.1016/j.jembe.2013.06.021 CrossRefGoogle Scholar
  10. Barrett R, Camphuysen KCJ, Anker-Nilssen T, Chardine JW, Furness WR, Grarthe S, Hüppop O, Leopold MF, Montevecchi WA, Veit RR (2007) Diet studies of seabirds: a review and recommendations. ICES J Mar Sci 64:1675–1691. doi:10.1093/icesjms/fsm152 CrossRefGoogle Scholar
  11. Batchelor AL, Ross GJB (1984) The diet and implications of dietary change of Cape gannets on Bird Island, Algoa Bay. Ostrich 55:45–63. doi:10.1080/00306525.1984.9634757 CrossRefGoogle Scholar
  12. Bearhop S, Thompson DR, Waldron S, Russel IC, Alexander G, Furness RW (1999) Stable isotopes indicate the extent of freshwater feeding by cormorants Phalacrocorax carbo shot at inland fisheries in England. J Appl Ecol 36:75–84. doi:10.1046/j.1365-2664.1999.00378.x CrossRefGoogle Scholar
  13. Bearhop S, Teece MA, Waldron S, Furness RW (2000) Influence of lipid and uric acid on δ13C and δ15N values of avian blood: implications for trophic studies. Auk 117:504–507. doi:10.1642/0004-8038(2000)117[0504:IOLAUA]2.0.CO;2Google Scholar
  14. Bearhop S, Waldron S, Votier SC, Furness RW (2002) Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiol Biochem Zool 75:451–458. doi:10.1086/342800 CrossRefGoogle Scholar
  15. Bearhop S, Phillips RA, McGill R, Cherel Y, Dawson DA, Croxall JP (2006) Stable isotopes indicate sex-specific and long-term individual foraging specialisation in diving seabirds. Mar Ecol Prog Ser 311:157–164. doi:10.3354/meps311157 CrossRefGoogle Scholar
  16. Becker BH, Newman SH, Inglis S, Beissinger SR (2007) Diet-feather stable isotope (δ15N and δ13C) fractionation in common murres and other seabirds. Condor 109:451–456. doi:10.1650/0010-5422(2007)109[451:DSINAC]2.0.CO;2Google Scholar
  17. Berruti A, Underhill LG, Shelton PA, Moloney C, Crawford RJM (1993) Seasonal and interannual variation in the diet of two colonies of the Cape gannet (Morus capensis) between 1977–78 and 1989. Colon Waterbirds 16:158–175. doi:10.2307/1521434 CrossRefGoogle Scholar
  18. BirdLife International (2017a) Species factsheet: Morus capensis. http://www.birdlife.org. Accessed 24 Jan 2017
  19. Bond AL, Diamond AW (2011) Recent bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors. Ecol Appl 21:1017–1023. doi:10.1890/09-2409.1 CrossRefGoogle Scholar
  20. Bonnevie BT (2014) Variations in moult, morphology, movement and survival rates of the Sombre Greenbul Andropadus importunus within southern Africa. Ostrich 85:161–170. doi:10.2989/00306525.2014.902403 CrossRefGoogle Scholar
  21. Boyd I, Wanless S, Camphuysen CJ (2006) Top predators in marine ecosystems: their role in monitoring and management. Cambridge University Press, Campbridge, p 378pCrossRefGoogle Scholar
  22. Budge SM, Iverson SJ, Koopman HN (2006) Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Mar Mamm Sci 22:759–801. doi:10.1111/j.1748-7692.2006.00079.x CrossRefGoogle Scholar
  23. Burke CM, Montevecchi WA, Regular PM (2015) Seasonal variation in parental care drives sex-specific foraging by a monomorphic seabird. PLoS One 10:e0141190. doi:10.1371/journal.pone.0141190 CrossRefGoogle Scholar
  24. Cameron-MacMillan ML, Walsh CJ, Wilhelm SI, Storey AE (2007) Male chicks are more costly to rear than females in a monogamous seabird, the common murre. Behav Ecol 18:81–85. doi:10.1093/beheco/arl048 CrossRefGoogle Scholar
  25. Carney KM, Sydeman WJ (1999) A review of human disturbance effects on nesting colonial waterbirds. Waterbirds 22:68–79. doi:10.2307/1521995 CrossRefGoogle Scholar
  26. Ceia FR, Ramos JA (2015) Individual specialization in the foraging and feeding strategies of seabirds: a review. Mar Biol 162:1923. doi:10.1007/s00227-015-2735-4 CrossRefGoogle Scholar
  27. Cherel Y, Hobson KA, Bailleul F, Groscolas R (2005a) Nutrition, physiology, and stable isotopes: new information from fasting and molting penguins. Ecology 86:2881–2888. doi:10.1890/05-0562 CrossRefGoogle Scholar
  28. Cherel Y, Hobson KA, Hassani S (2005b) Isotopic discrimination between food and blood and feathers of captive penguins: implications for dietary studies in the wild. Physiol Biochem Zool 78:106–115. doi:10.1086/425202 CrossRefGoogle Scholar
  29. Christie WW (1973) Lipid analysis: isolation, separation, identification and structural analysis of lipids. Pergamon Press, New YorkGoogle Scholar
  30. Ciancio JE, Righi C, Faiella A, Frere E (2016) Blood-specific isotopic discrimination factors in the Magellanic penguin (Spheniscus magellanicus). Rapid Commun Mass Spectrom 30:1865–1869. doi:10.1002/rcm.7661 CrossRefGoogle Scholar
  31. Clarke MR (1986) A handbook for the identification of cephalopod beaks. Clarendon Press, OxfordGoogle Scholar
  32. Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143. doi:10.1111/j.1442-9993.1993.tb00438.x CrossRefGoogle Scholar
  33. Clarke J, Manly B, Kerry K, Gardner H, Franchi E, Corsolini S, Focardi S (1998) Sex differences in Adélie penguin foraging strategies. Polar Biol 20:248–258. doi:10.1007/s003000050301 CrossRefGoogle Scholar
  34. Coetzee JC, van der Lingen CD, Hutchings L, Fairweather TP (2008) Has the fishery contributed to a major shift in the distribution of South African sardine? ICES J Mar Sci 65:1676–1688. doi:10.1093/icesjms/fsn184 CrossRefGoogle Scholar
  35. Connan M, Hofmeyr GJG, Smale MJ, Pistorius PA (2014a) Trophic investigations of Cape fur seals at the easternmost extreme of their distribution. Afr J Mar Sci 36:331–344. doi:10.2989/1814232X.2014.954619 CrossRefGoogle Scholar
  36. Connan M, McQuaid CD, Bonnevie BT, Smale MJ, Cherel Y (2014b) Combined stomach content, lipid and stable isotope analyses reveal spatial and trophic partitioning among three sympatric albatrosses from the Southern Ocean. Mar Ecol Prog Ser 497:259–272. doi:10.3354/meps10606 CrossRefGoogle Scholar
  37. Cooper J (1978) Energetic requirements for growth and maintenance of the Cape gannet (Aves; Sulidae). Afr Zool 13:305–317CrossRefGoogle Scholar
  38. Courtenay-Latimer M (1954) Investigation on the Cape gannet. Ostrich 25:106–114. doi:10.1080/00306525.1954.9633023 CrossRefGoogle Scholar
  39. Crawford RJM, Dundee BL, Dyer BM, Klages NTW, Meÿer MA, Upfold L (2007) Trends in numbers of Cape gannets (Morus capensis), 1956/1957—2005/2006, with a consideration of the influence of food and other factors. ICES J Mar Sci 64:169–177. doi:10.1093/icesjms/fsl011 CrossRefGoogle Scholar
  40. Crawford RJM, Whittington PA, Martin AP, Tree AJ, Makhado AB (2009) Population trends of seabirds breeding in South Africa’s Eastern Cape and the possible influence of anthropogenic and environmental change. Mar Ornithol 37:159–174Google Scholar
  41. Crawford RJM, Makhado AB, Whittington PA, Randall RM, Oosthuizen WH, Waller LJ (2015) A changing distribution of seabirds in South Africa—the possible impact of climate and its consequences. Front Ecol Evol 3:10. doi:10.3389/fevo.2015.00010 CrossRefGoogle Scholar
  42. Cucherousset J, Villéger S (2015) Quantifying the multiple facets of isotopic diversity: new metrics for stable isotope ecology. Ecol Indic 56:152–160. doi:10.1016/j.ecolind.2015.03.032 CrossRefGoogle Scholar
  43. Dalerum F, Angerbjörn A (2005) Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia 144:647–658. doi:10.1007/s00442-005-0118-0 CrossRefGoogle Scholar
  44. Department of Agriculture, Forestry and Fisheries (2014) Status of the South African marine fishery resources 2014. Cape Town, South AfricaGoogle Scholar
  45. Distiller G, Altwegg R, Crawford RJM, Klages NTW, Barham B (2012) Factors affecting adult survival and inter-colony movement at the three South African colonies of Cape gannet. Mar Ecol Prog Ser 461:245–255. doi:10.3354/meps09807 CrossRefGoogle Scholar
  46. Elliott KH, Gaston AJ, Crump D (2010) Sex-specific behavior by a monomorphic seabird represents risk partitioning. Behav Ecol 21:1024–1032. doi:10.1093/beheco/arq076 CrossRefGoogle Scholar
  47. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation ad purification of total lipides from animal tissues. J Biol Chem 226:497–509Google Scholar
  48. Fridolfsson AK, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121. doi:10.2307/3677252 CrossRefGoogle Scholar
  49. Galloway AWE, Brett MT, Holtgrieve GW, Ward EJ, Ballantyne AP, Burns CW, Kainz MJ, Müller-Navarra DC, Persson J, Ravet JL, Strandberg U, Taipale SJ, Alhgren G (2015) A fatty acid based bayesian approach for inferring diet in aquatic consumers. PLoS One 10:e0129723. doi:10.1371/journal.pone.0129723 CrossRefGoogle Scholar
  50. Grahl-Nielsen O, Halvorsen A-K, Bodoev N, Averina L, Radnaeva L, Pronin N, Kakela R, Petrov E (2005) Fatty acid composition of blubber of the Baikal seal Phoca sibirica and its marine relative, the ringed seal P. hispida. Mar Ecol Prog Ser 305:261–274. doi:10.3354/meps305261 CrossRefGoogle Scholar
  51. Green AJ (2000) The scaling and selection of sexually dimorphic characters: an example using the Marbled Teal. J Avian Biol 31:345–350. doi:10.1034/j.1600-048X.2000.310310.x CrossRefGoogle Scholar
  52. Green DB, Coetzee JC, Rishworth GM, Pistorius PA (2015a) Foraging distribution of Cape gannets in relation to oceanographic features, prey availability and marine protected areas. Mar Ecol Prog Ser 537:277–288. doi:10.3354/meps11428 CrossRefGoogle Scholar
  53. Green DB, Klages NTW, Crawford RJM, Coetzee JC, Dyer BM, Rishworth GM, Pistorius PA (2015b) Dietary change in Cape gannets reflects distributional and demographic shifts in two South African commercial fish stocks. ICES J Mar Sci 72:771–781. doi:10.1093/icesjms/fsu203 CrossRefGoogle Scholar
  54. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: palaeontological statistics software package for education and data analysis. Palaeontol Electron 4:9pGoogle Scholar
  55. Hayward A, Gillooly JF (2011) The cost of sex: quantifying energetic investment in gamete production by males and females. PLoS One 6:e16557. doi:10.1371/journal.pone.0016557 CrossRefGoogle Scholar
  56. Hill JM, McQuaid CD, Kaehler S (2006) Biogeographic and nearshore-offshore trends in isotope ratios of intertidal mussels and their food sources around the coast of southern Africa. Mar Ecol Prog Ser 318:63–73. doi:10.3354/meps318063 CrossRefGoogle Scholar
  57. Hobson KA, Clark RG (1992a) Assessing avian diets using stable-isotope analysis. I: turnover of carbon-13. Condor 94:181–188. doi:10.2307/1368807 CrossRefGoogle Scholar
  58. Hobson KA, Clark RG (1992b) Assessing avian diets using stable isotopes II: factors influencing diet—tissue fractionation. Condor 94:189–197. doi:10.2307/1368808 CrossRefGoogle Scholar
  59. Hobson KA, Clark RG (1993) Turnover of 13C in cellular and plasma fractions of blood: implications for non destructive sampling in avian dietary studies. Auk 110:638–641. doi:10.2307/4088430 CrossRefGoogle Scholar
  60. Iverson SJ, Field C, Bowen WD, Blanchard W (2004) Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol Monogr 74:211–235. doi:10.1890/02-4105 CrossRefGoogle Scholar
  61. Iverson SJ, Springer AM, Kitaysky AS (2007) Seabirds as indicators of food web structure and ecosystem variability: qualitative and quantitative diet analyses using fatty acids. Mar Ecol Prog Ser 352:235–243. doi:10.3354/meps07073 CrossRefGoogle Scholar
  62. Jacobs SR, Elliott KH, Gaston AJ (2013) Parents are a drag: long-lived birds share the cost of increased foraging effort with their offspring, but males pass on more of the costs than females. PLoS One 8:e54594. doi:10.1371/journal.pone.0054594 CrossRefGoogle Scholar
  63. Jaquemet S, McQuaid CD (2008) Stable isotope ratios in Cape gannets around the southern coasts of Africa reveal penetration of biogeographic patterns in oceanic signatures. Estuar Coast Shelf Sci 80:374–380. doi:10.1016/j.ecss.2008.08.019 CrossRefGoogle Scholar
  64. Jaquemet S, Potier M, Cherel Y, Kojadinovic J, Bustamante P, Richard P, Catry P, Ramos JA, Le Corre M (2008) Comparative foraging ecology and ecological niche of a superabundant tropical seabird: the sooty tern Sterna fuscata in the southwest Indian Ocean. Mar Biol 155:505–520. doi:10.1007/s00227-008-1049-1 CrossRefGoogle Scholar
  65. Jarvis MJF (1974) The ecological significance of clutch size in the South African gannet (Sula capensis Lichtenstein). J Anim Ecol 43:1–17. doi:10.2307/3154 CrossRefGoogle Scholar
  66. Käkelä A, Furness RW, Kelly A, Strandberg U, Waldron S, Käkelä R (2007) Fatty acid signatures and stable isotopes as dietary indicators in North Sea seabirds. Mar Ecol Prog Ser 342:291–301. doi:10.3354/meps342291 CrossRefGoogle Scholar
  67. Käkelä R, Furness RW, Kahle S, Becker PH, Käkelä A (2009) Fatty acid signatures in seabird plasma are a complex function of diet composition: a captive feeding trial with herring gulls. Funct Ecol 23:141–149. doi:10.1111/j.1365-2435.2008.01475.x CrossRefGoogle Scholar
  68. Karnovsky NJ, Hobson KA, Iverson S, Hunt GL (2008) Seasonal changes in diets of seabirds in the North Water Polynya: a multiple-indicator approach. Mar Ecol Prog Ser 357:291–299. doi:10.3354/meps07295 CrossRefGoogle Scholar
  69. Karnovsky NJ, Hobson KA, Iverson SJ (2012) From lavage to lipids: estimating diets of seabirds. Mar Ecol Prog Ser 451:263–284. doi:10.3354/meps09713 CrossRefGoogle Scholar
  70. Klages NTW (1994) Dispersal and site fidelity of Cape gannets Morus capensis. Ostrich 65:218–224. doi:10.1080/00306525.1994.9639685 CrossRefGoogle Scholar
  71. Klages NTW, Willis AB, Ross GJB (1992) Variability in the diet of the Cape gannet at Bird Island, Algoa Bay, South Africa. S Afr J Mar Sci 12:761–771. doi:10.2989/02577619209504740 CrossRefGoogle Scholar
  72. Laugksch RC, Duffy DC (1986) Food transit rates in Cape gannets and Jackass penguins. Condor 88:117–119. doi:10.2307/1367775 CrossRefGoogle Scholar
  73. Lewis S, Benvenuti S, Dall-Antonia L, Griffiths R, Money L, Sherratt TN, Wanless S, Hamer KC (2002) Sex-specific foraging behaviour in a monomorphic seabird. Proc R Soc B 269:1687–1693. doi:10.1098/rspb.2002.2083 CrossRefGoogle Scholar
  74. Maree BA, Wanless RM, Fairweather TP, Sullivan BJ, Yates O (2014) Significant reductions in mortality of threatened seabirds in a South African trawl fishery. Anim Conserv 17:520–529. doi:10.1111/acv.12126 CrossRefGoogle Scholar
  75. Michener RH, Kaufman L (2007) Stable isotope ratios as tracers in marine food webs: an update. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell Publishing Ltd, Singapore, pp 238–282CrossRefGoogle Scholar
  76. Mizutani H, Fukuda M, Kabaya Y (1992) δ13C and δ15N enrichment factors of feathers of 11 species of adult birds. Ecology 73:1391–1395. doi:10.2307/1940684 CrossRefGoogle Scholar
  77. Moore JW, Semmens BX (2008) Incorporating uncertainty and prior information into stable isotope mixing models. Ecol Lett 11:470–480. doi:10.1111/j.1461-0248.2008.01163.x CrossRefGoogle Scholar
  78. Moseley C, Grémillet D, Connan M, Ryan PG, Mullers RHE, van der Lingen CD, Miller TW, Coetzee JC, Crawford RJM, Sabarros P, McQuaid CD, Pichegru L (2012) Foraging ecology and ecophysiology of Cape gannets from colonies in contrasting feeding environments. J Exp Mar Biol Ecol 422–423:29–38. doi:10.1016/j.jembe.2012.04.002 CrossRefGoogle Scholar
  79. Mullers RHE, Navarro RA (2010) Foraging behaviour of Cape gannets as an indicator of colony health status. Endanger Species Res 12:193–202. doi:10.3354/esr00306 CrossRefGoogle Scholar
  80. Mullers RHE, Navarro RA, Crawford RJM, Underhill LG (2009) The importance of lipid-rich fish prey for Cape gannet chick growth: are fishery discards an alternative? ICES J Mar Sci 66:2244–2252. doi:10.1093/icesjms/fsp210 CrossRefGoogle Scholar
  81. Nelson JB (1965) The behaviour of the Gannet. Br Birds 58:233–288Google Scholar
  82. Nelson B (1980) Seabirds. Their biology and ecology. The Hamlyn Publishing Group Limited, FelthamGoogle Scholar
  83. O’Donoghue SH, Whittington PA, Dyer BM, Peddemors VM (2010) Abundance and distribution of avian and marine mammal predators of sardine observed during the 2005 KwaZulu-Natal sardine run survey. Afr J Mar Sci 32:361–374. doi:10.2989/1814232X.2010.502640 CrossRefGoogle Scholar
  84. Owen E, Daunt F, Moffat C, Elston DA, Wanless S, Thompson P (2013) Analysis of fatty acids and fatty alcohols reveals seasonal and sex-specific changes in the diets of seabirds. Mar Biol 160:987–999. doi:10.1007/s00227-012-2152-x CrossRefGoogle Scholar
  85. Parnell AC, Phillips DL, Bearhop S, Semmens BX, Ward EJ, Moore JW, Jackson AL, Grey J, Kelly DJ, Inger R (2013) Bayesian stable isotope mixing models. Environmetrics 24:387–399. doi:10.1002/env.2221 Google Scholar
  86. Phillips RA, Bearhop S, McGill RAR, Dawson DA (2009) Stable isotopes reveal individual variation in migration strategies and habitat preferences in a suite of seabirds during the nonbreeding period. Oecologia 160:795–806. doi:10.1007/s00442-009-1342-9 CrossRefGoogle Scholar
  87. Phillips DL, Inger R, Bearhop S, Jackson AL, Moore JW, Parnell AC, Semmens BX, Ward EJ (2014) Best practices for use of stable isotope mixing models in food-web studies. Can J Zool 92:823–835. doi:10.1139/cjz-2014-0127 CrossRefGoogle Scholar
  88. Pichegru L, Ryan PG, van der Lingen CD, Coetzee J, Ropert-Coudert Y, Grémillet D (2007) Foraging behaviour and energetics of Cape gannets Morus capensis feeding on live prey and fishery discards in the Benguela upwelling system. Mar Ecol Prog Ser 350:127–136. doi:10.3354/meps07128 CrossRefGoogle Scholar
  89. Pistorius PA, Hindell MA, Tremblay Y, Rishworth GM (2015) Weathering a dynamic seascape: influences of wind and rain on a seabird’s year-round activity budgets. PLoS One 10:e0142623. doi:10.1371/journal.pone.0142623 CrossRefGoogle Scholar
  90. Polito MJ, Abel S, Tobias CR, Emslie SD (2011) Dietary isotopic discrimination in gentoo penguin (Pygoscelis papua) feathers. Polar Biol 34:1057–1063. doi:10.1007/s00300-011-0966-5 CrossRefGoogle Scholar
  91. Polito MJ, Koopman HN, Able S, Walsh J, Goebel ME (2012) Physiological constraints and the influence of diet on fatty acids in the yolk of gentoo penguins, Pygoscelis papua. J Comp Physiol B 182:703–713. doi:10.1007/s00360-012-0649-8 CrossRefGoogle Scholar
  92. Provencher JF, Elliott KH, Gaston AJ, Braune BM (2013) Networks of prey specialization in an Arctic monomorphic seabird. J Avian Biol 44:551–560. doi:10.1111/j.1600-048X.2013.05717.x CrossRefGoogle Scholar
  93. Pyke GH (1984) Optimal foraging theory: a critical review. Ann Rev Ecol Sys 15:523–575. doi:10.1146/annurev.es.15.110184.002515 CrossRefGoogle Scholar
  94. R Development Team (2015) A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  95. Raclot T, Groscolas R, Cherel Y (1998) Fatty acid evidence for the importance of myctophid fishes in the diet of king penguins, Aptenodytes patagonicus. Mar Biol 132:523–533. doi:10.1007/s002270050418 CrossRefGoogle Scholar
  96. Rishworth GM, Connan M, Green DB, Pistorius PA (2014a) Sex differentiation based on the gular stripe in the apparently monomorphic Cape gannet. Afr Zool 49:107–112. doi:10.3377/004.049.0115 CrossRefGoogle Scholar
  97. Rishworth GM, Tremblay Y, Green DB, Connan M, Pistorius PA (2014b) Drivers of time-activity budget variability during breeding in a pelagic seabird. PLoS One 9:e116544. doi:10.1371/journal.pone.0116544 CrossRefGoogle Scholar
  98. Roy C, van der Lingen CD, Coetzee JC, Lutjeharms JRE (2007) Abrupt environmental shift associated with changes in the distribution of Cape anchovy Engraulis encrasicolus spawners in the southern Benguela. Afr J Mar Sci 29:309–319. doi:10.2989/AJMS.2007.29.3.1.331 CrossRefGoogle Scholar
  99. Ryan PG, Boix-Hinzen C (1999) Consistent male-biased seabird mortality in the Patagonian toothfish longline fishery. Auk 116:851–854. doi:10.2307/4089350 CrossRefGoogle Scholar
  100. Sears J, Hatch SA, O’Brien DM (2009) Disentangling effects of growth and nutritional status on seabird stable isotope ratios. Oecologia 159:41–48. doi:10.1007/s00442-008-1199-3 CrossRefGoogle Scholar
  101. Semmens BX, Ward EJ, Moore JW, Darimont CT (2009) Quantifying inter- and intra-population niche variability using hierarchical bayesian stable isotope mixing models. PLoS One 4:e6187. doi:10.1371/journal.pone.0006187 CrossRefGoogle Scholar
  102. Smale MJ (1984) Inshore small-mesh trawling survey of the Cape south coast. Part 3. The occurrence and feeding of Argyrosomus hololepidotus, Pomatomus saltatrix and Merluccius capensis. S Afr J Zool 19:170–179CrossRefGoogle Scholar
  103. Smale MJ, Watson G, Hecht T (1995) African marine fishes. In: Ichthyological monographs of the JLB Smith Institute of Ichthyology, vol 1. JLB Smith Institute of Ichthyology, Grahamstown, pp 1–253Google Scholar
  104. Smith MM, Heemstra PC (1986) Smith’s sea fishes. Southern Book Publishers (Pty) Ltd., JohannesburgCrossRefGoogle Scholar
  105. Smith JA, Mazumder D, Suthers IM, Taylor MD (2013) To fit or not to fit: evaluating stable isotope mixing models using simulated mixing polygons. Methods Ecol Evol 4:612–618. doi:10.1111/2041-210X.12048 CrossRefGoogle Scholar
  106. Stauss C, Bearhop S, Bodey TW, Garthe S, Gunn C, Grecian WJ, Inger R, Knight ME, Newton J, Patrick SC, Phillips RA, Waggitt JJ, Votier SC (2012) Sex-specific foraging behaviour in northern gannets Morus bassanus: incidence and implications. Mar Ecol Prog Ser 457:151–162. doi:10.3354/meps09734 CrossRefGoogle Scholar
  107. Stock BC and Semmens BX (2015) MixSIAR User Manual, version 3.0Google Scholar
  108. Surai PF, Bortolotti GR, Fidgett AL, Blount JD, Speake BK (2001) Effects of piscivory on the fatty acid profiles and antioxidant of avian yolk: studies on eggs of the gannet, skua, pelican and cormorant. J Zool Lond 255:305–312. doi:10.1017/S0952836901001406 CrossRefGoogle Scholar
  109. Tew Kai E, Benhamou S, van der Lingen CD, Coetzee JC, Pichegru L, Ryan PG, Gremillet D (2013) Are Cape gannets dependent on fishery waste? A multi-scale analysis using seabird GPS-tracking, hydroacoustic surveys of pelagic fish, and vessel monitoring systems. J Appl Ecol 50:659–670. doi:10.1111/1365-2664.12086 CrossRefGoogle Scholar
  110. Thiebault A, Mullers RHE, Pistorius PA, Meza-Torres MA, Dubroca L, Green D, Tremblay Y (2014) From colony to first patch: processes of prey searching and social information in Cape gannets. Auk 131:595–609. doi:10.1642/AUK-13-209.1 CrossRefGoogle Scholar
  111. Thiebot J-B, Cherel Y, Acqueberge M, Prudor A, Trathan PN, Bost C-A (2014) Adjustment of pre-moult foraging strategies in Macaroni Penguins Eudyptes chrysolophus according to locality, sex and breeding status. Ibis 156:511–522. doi:10.1111/ibi.12151 CrossRefGoogle Scholar
  112. Tremblay Y, Thiebault A, Mullers R, Pistorius P (2014) Bird-borne video-cameras show that seabird movement patterns relate to previously unrevealed proximate environment, not prey. PLoS One 9:e88424. doi:10.1371/journal.pone.0088424 CrossRefGoogle Scholar
  113. van der Lingen CD, Coetzee JC, Hutchings LF. 2011. Causes and effects of changes in the distribution of sardine and anchovy in shelf waters off South Africa. In: Zietsmnan L (ed) Observations on environmental change in South Africa. SUN MeDIA, Stellenbosch, pp 252–277. ISBN 978-1-920338024-4Google Scholar
  114. Votier SC, Bearhop S, Witt MJ, Inger R, Thompson D, Newton J (2010) Individual responses of seabirds to commercial fisheries revealed using GPS tracking, stable isotopes and vessel monitoring systems. J Appl Ecol 47:487–497. doi:10.1111/j.1365-2664.2010.01790.x CrossRefGoogle Scholar
  115. Votier SC, Grecian WJ, Patrick S, Newton J (2011) Inter-colony movements, at-sea behaviour and foraging in an immature seabird: results from GPS-PPT tracking, radio-tracking and stable isotope analysis. Mar Biol 158:355–362. doi:10.1007/s00227-010-1563-9 CrossRefGoogle Scholar
  116. Votier SC, Bicknell A, Cox SL, Scales KL, Patrick SC (2013) A bird’s eye view of discard reforms: bird-borne cameras reveal seabird/fishery interactions. PLoS One 8:e57376. doi:10.1371/journal.pone.0057376 CrossRefGoogle Scholar
  117. Wang SW, Hollmen TE, Iverson SJ (2010) Validating quantitative fatty acid signature analysis to estimate diets of spectacled and Steller’s eiders (Somateria fischeri and Polysticta stelleri). J Comp Physiol B 180:125–139. doi:10.1007/s00360-009-0393-x CrossRefGoogle Scholar
  118. Wang SW, Hollmen TE, Iverson SJ (2014) Egg yolk fatty acids as a proxy to quantify diets of female Spectacled Eiders (Somateria fischeri). Can J Zool 92:453–461. doi:10.1139/cjz-2013-0293 CrossRefGoogle Scholar
  119. Ward EJ, Semmens BX, Schindler DE (2010) Including source uncertainty and prior information in the analysis of stable isotope mixing models. Environ Sci Technol 44:4645–4650. doi:10.1021/es100053v CrossRefGoogle Scholar
  120. Watkins BP, Petersen SL, Ryan PG (2008) Interactions between seabirds and deep-water hake trawl gear: an assessment of impacts in South African waters. Anim Conserv 11:247–254. doi:10.1111/j.1469-1795.2008.00192.x CrossRefGoogle Scholar
  121. Weimerskirch H, Cherel Y, Cuenot-Chaillet F, Ridoux V (1997) Alternative foraging strategies and resource allocation by male and female wandering albatrosses. Ecology 78:2051–2063. doi:10.1890/0012-9658(1997)078[2051:AFSARA]2.0.CO;2Google Scholar
  122. Weimerskirch H, Barbraud C, Lys P (2000) Sex differences in parental investment and chick growth in Wandering albatrosses: fitness consequences. Ecology 81:309–318. doi:10.1890/0012-9658(2000)081[0309:SDIPIA]2.0.CO;2Google Scholar
  123. Welcker J, Steen H, Harding AMA, Gabrielsen GW (2009) Sex-specific provisioning behaviour in a monomorphic seabird with a bimodal foraging strategy. Ibis 151:502–513. doi:10.1111/j.1474-919X.2009.00931.x CrossRefGoogle Scholar
  124. Whitehead TO, Connan M, Ropert-Coudert Y, Ryan PG (2017) Subtle but significant segregation in the feeding ecology of sympatric penguins during the critical pre-moult period. Mar Ecol Prog Ser. doi:10.3354/meps12017 (in press) Google Scholar
  125. Williams TD (2005) Mechanisms underlying the costs of egg production. Bioscience 55:39–48. doi:10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.CO;2Google Scholar
  126. Williams CT, Buck CL (2010) Using fatty acids as dietary tracers in seabird trophic ecology: theory, application and limitations. J Ornithol 151:531–543. doi:10.1007/s10336-010-0513-0 CrossRefGoogle Scholar
  127. Wold A, Jaeger I, Hop H, Gabrielsen GW, Falk-Petersen S (2011) Arctic seabird food chains explored by fatty acid composition and stable isotopes in Kongsfjorden, Svalbard. Polar Biol 34:1147–1155. doi:10.1007/s00300-011-0975-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Zoology and EntomologyRhodes UniversityGrahamstownSouth Africa
  2. 2.Department of ZoologyNelson Mandela UniversityPort ElizabethSouth Africa
  3. 3.Percy FitzPatrick Institute of African Ornithology, DST-NRF Centre of ExcellenceUniversity of Cape TownCape TownSouth Africa
  4. 4.Seabird Conservation ProgrammeBirdLife South AfricaCape TownSouth Africa
  5. 5.Department of Agriculture, Forestry and Fisheries, Cape Town, South Africa; and Marine Research Institute and Department of Biological SciencesUniversity of Cape TownCape TownSouth Africa

Personalised recommendations