Advertisement

Marine Biology

, 164:166 | Cite as

Natural patches in Posidonia oceanica meadows: the seasonal biogeochemical pore water characteristics of two edge types

  • Arnaud AbadieEmail author
  • Alberto V. Borges
  • Willy Champenois
  • Sylvie Gobert
Original paper

Abstract

Seagrass meadows can be assimilated to seascape matrixes encompassing a mosaic of natural and anthropogenic patches. Natural patches within the Mediterranean Posidonia oceanica meadows show a structural particularity which consist in a duality of their edge types. One edge is eroded by bottom currents, while the adjacent meadow colonizes the bare sediments. This study aims to study the dynamics of these two edges through the investigation of the biogeochemistry (pH, total alkalinity, dissolved inorganic carbon, CO2, CH4, N2O, H2S, dissolved inorganic nitrogen, PO4 3−) within vegetated and unvegetated sediments. These observations are compared with the adjacent meadow to have a better understanding of the colonization processes. Our results reveal that the P. oceanica matrix shows differences from the vegetated edges of sand patches, especially with regard to nutrient availability, which is generally more important at the colonized edge (dissolved inorganic nitrogen up to 65.39 μM in June). A clear disparity also occurs between the eroded and colonized edge with both a seasonal and bathymetrical variation of leaf biomass with higher disparities at 10 m in June (colonized edge 1415 gDW m−2; eroded edge 1133 gDW m−2). The most important contrasts during this study were assessed in June, suggesting that the warm period of the year is more suitable for sampling to highlight disparate characteristics in temperate seagrass meadows. These findings put into light the potential importance of biogeochemical processes in the dynamics of natural patch edges. We hypothesize that they may influence the structural dynamics of P. oceanica seascapes.

Notes

Acknowledgements

We thank Marc-Vincent Commarieu for TA analysis, and Renzo Biondo for nutrient analysis. We also thank Jonathan Richir, Nicolas Cimiterra and Michèle Leduc for their support during the scuba diving sampling and the acquisition of the temperature and light data. This study is part of the STARE-CAPMED (STAtion of Reference and rEsearch on Change of local and global Anthropogenic Pressures on Mediterranean Ecosystems Drifts) program funded by the Territorial Collectivity of Corsica and by the French Water Agency (PACA-Corsica). The GC was acquired with funds from the Fonds National de la Recherche Scientifique (FNRS) (Contract No. 2.4.598.07). Alberto V. Borges is a senior research associate at the FNRS. Arnaud Abadie acknowledges a CIFRE Ph.D. Grant (2013/0470) of the French ANRT (Association Nationale Recherche Technologie). We thank the two anonymous referees who contributed to improve the manuscript with constructive comments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

References

  1. Abadie A, Gobert S, Bonacorsi M, Lejeune P, Pergent G, Pergent-Martini C (2015) Marine space ecology and seagrasses. Does patch type matter in Posidonia oceanica seascapes? Ecol Indic 57:435–446. doi: 10.1016/j.ecolind.2015.05.020 CrossRefGoogle Scholar
  2. Abadie A, Lejeune P, Pergent G, Gobert S (2016) From mechanical to chemical impact of anchoring in seagrasses: the premises of anthropogenic patch generation in Posidonia oceanica meadows. Mar Pollut Bull 109:61–71CrossRefGoogle Scholar
  3. Aminot A, Kérouel R (2007) Dosage automatique des nutriments dans les eaux marines. Editions Quae Ifremer, VersaillesGoogle Scholar
  4. Angelstam P (1992) Conservation of communities—the importance of edges, surroundings and landscape mosaic structure ecological principles of nature conservation. Springer, Berlin, pp 9–70CrossRefGoogle Scholar
  5. Barrón C, Duarte CM, Frankignoulle M, Borges AV (2006) Organic carbon metabolism and carbonate dynamics in a Mediterranean seagrass (Posidonia oceanica) meadow. Estuar Coast 29:417–426. doi: 10.1007/BF02784990 CrossRefGoogle Scholar
  6. Bay D (1984) A field study of he growth dynamics and productivity of Posidonia oceanica (L.) Delile in Calvi Bay, Corsica. Aquat Bot 20:43–64CrossRefGoogle Scholar
  7. Beck MW, Heck KL, Able KW, Childers DL, Eggleston DB, Gillanders BM, Halpern BS, Hays CG, Hoshino K, Minello TJ, Orth RJ, Sheridan PF, Weinstein MP (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51:633–641. doi:10.1641/0006-3568(2001)051[0633:TICAMO]2.0.CO;2Google Scholar
  8. Borg JA, Rowden AA, Attrill MJ, Schembri PJ, Jones MB (2006) Wanted dead or alive: high diversity of macroinvertebrates associated with living and ‘dead’ Posidonia oceanica matte. Mar Biol 149(3):667–677. doi: 10.1007/s00227-006-0250-3 CrossRefGoogle Scholar
  9. Borges AV, Darchambeau F, Teodoru CR, Marwick TR, Tamooh F, Geeraert N, Omengo FO, Guerin F, Lambert T, Morana C, Okuku E, Bouillon S (2015) Globally significant greenhouse-gas emissions from African inland waters. Nat Geosci 8:637–642. doi:10.1038/ngeo2486. http://www.nature.com/ngeo/journal/v8/n8/abs/ngeo2486.html—supplementary-information
  10. Boström C, Jackson EL, Simenstad CA (2006) Seagrass landscapes and their effects on associated fauna: a review. Estuar Coast Shelf Sci 68:383–403. doi: 10.1016/j.ecss.2006.01.026 CrossRefGoogle Scholar
  11. Brooks KM (2001) An evaluation of the relationship between salmon farm biomass, organic inputs to sediments, physicochemical changes associated with those inputs and the infaunal response—with emphasis on total sediment sulfides, total volatile solids, and oxidation-reduction potential as surrogate endpoints for biological monitoring. Aquatic Environmental Sciences, 644 Old Eaglemount Road, Port Townsend, Washington 98368Google Scholar
  12. Buia MC, Zupo V, Mazzella L (1992) Primary production and growth dynamics in Posidonia oceanica. Mar Ecol 13:2–16CrossRefGoogle Scholar
  13. Burdige DJ, Zimmerman RC (2002) Impact of sea grass density on carbonate dissolution in Bahamian sediments. Limnol Oceanogr 47:1751–1763CrossRefGoogle Scholar
  14. Caffrey JM, Kemp WM (1990) Nitrogen cycling in sediments with estuarine populations of Potamogeton perfoliatus and Zostera marina. Mar Ecol Prog Ser 66:147–160CrossRefGoogle Scholar
  15. Calleja ML, Marbà N, Duarte CM (2007) The relationship between seagrass (Posidonia oceanica) decline and sulfide porewater concentration in carbonate sediments. Estuar Coast Shelf Sci 73:583–588. doi: 10.1016/j.ecss.2007.02.016 CrossRefGoogle Scholar
  16. Canals M, Ballesteros E (1997) Production of carbonate particles by phytobenthic communities on the Mallorca-Menorca shelf, northwestern Mediterranean Sea. Deep Sea Res II (Top Stud Oceanogr) 44:611–629CrossRefGoogle Scholar
  17. Carpenter JH (1965) The accuracy of the Winkler method for dissolved oxygen analysis. Limnol Oceanogr 10:135–140. doi: 10.4319/lo.1965.10.1.0135 CrossRefGoogle Scholar
  18. Clabaut P, Augris C, Pergent G, Pergent-Martini C, Pasqualini V, Bonacorsi M (2014) Les fonds marins côtiers de Corse. Cartographie biomorphosédimentaire. Editions Quae, VersaillesGoogle Scholar
  19. Dauby P, Poulicek M (1995) Methods for removing epiphytes from seagrasses: SEM observations on treated leaves. Aquat Bot 52:217–228CrossRefGoogle Scholar
  20. de Boer WF (2007) Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurrence: a review. Hydrobiologia 591:5–24CrossRefGoogle Scholar
  21. de los Santos CB, Vicencio-Rammsy B, Lepoint G, Remy F, Bouma TJ, Gobert S (2016) Ontogenic variation and effect of collection procedure on leaf biomechanical properties of Mediterranean seagrass Posidonia oceanica (L.) Delile. Mar Ecol 37(4):750–759. doi: 10.1111/maec.12340 CrossRefGoogle Scholar
  22. den Hartog C (1970) The sea-grasses of the world. North-Holland Pub. Co., AmsterdamGoogle Scholar
  23. Díaz-Almela E, Marbà N, Martínez R, Santiago R, Duarte CM (2009) Seasonal dynamics of Posidonia oceanica in Magaluf Bay (Mallorca, Spain): temperature effects on seagrass mortality. Limnol Oceanogr 54:2170–2182. doi: 10.4319/lo.2009.54.6.2170 CrossRefGoogle Scholar
  24. Dickson AG (1993) pH buffers for sea water media based on the total hydrogen ion concentration scale. Deep Sea Res Part I 40:107–118CrossRefGoogle Scholar
  25. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res A Oceanogr Res Pap 34:1733–1743CrossRefGoogle Scholar
  26. Elkalay K, Frangoulis C, Skliris N, Goffart A, Gobert S, Lepoint G, Hecq J-H (2003) A model of the seasonal dynamics of biomass and production of the seagrass Posidonia oceanica in the Bay of Calvi (Northwestern Mediterranean). Ecol Model 167:1–18. doi: 10.1016/S0304-3800(03)00074-7 CrossRefGoogle Scholar
  27. Enriquez S, Marbà N, Cebriàn J, Duarte CM (2004) Annual variation in leaf photosynthesis and leaf nutrient content of four Mediterranean seagrasses. Bot Mar 47:295–306CrossRefGoogle Scholar
  28. Eyre BD, Ferguson AJP, Webb A, Maher D, Oakes JM (2011) Denitrification, N-fixation and nitrogen and phosphorus fluxes in different benthic habitats and their contribution to the nitrogen and phosphorus budgets of a shallow oligotrophic sub-tropical coastal system (southern Moreton Bay, Australia). Biogeochemistry 102:111–133. doi: 10.1007/s10533-010-9425-6 CrossRefGoogle Scholar
  29. Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, CambridgeGoogle Scholar
  30. Fourqurean JW, Duarte CM, Kennedy H, Marba N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505–509. http://www.nature.com/ngeo/journal/v5/n7/abs/ngeo1477.html—supplementary-information
  31. Gacia E, Duarte C, Middelburg JJ (2002) Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica) meadow. Limnol Oceanogr 47:23–32CrossRefGoogle Scholar
  32. García R, Sánchez-Camacho M, Duarte CM, Marbà N (2012) Warming enhances sulphide stress of Mediterranean seagrass (Posidonia oceanica). Estuar Coast Shelf Sci 113:240–247. doi: 10.1016/j.ecss.2012.08.010 CrossRefGoogle Scholar
  33. García-Martínez M, López-López A, Calleja ML, Marbà N, Duarte CM (2009) Bacterial community dynamics in a seagrass (Posidonia oceanica) meadow sediment. Estuar Coast 32:276–286CrossRefGoogle Scholar
  34. Gera A, Pages JF, Romero J, Alcoverro T (2013) Combined effects of fragmentation and herbivory on Posidonia oceanica seagrass ecosystems. J Ecol 101:1053–1061CrossRefGoogle Scholar
  35. Giraud G (1979) Sur une méthode de mesure et de comptage des structures foliaires de Posidonia oceanica (Linnaeus) Delile. Bull Mus d’Histoire Nat Marseille 39:33–39Google Scholar
  36. Gobert S, Lepoint G, Biondo R, Bouquegneau JM (2006) In situ sampling of pore waters from seagrass meadows. Biol Mar Mediterr 13:230–234Google Scholar
  37. Gobert S, Lepoint G, Pelaprat C, Remy F, Lejeune P, Richir J, Abadie A (2016) Temporal evolution of sand corridors in a Posidonia oceanica seascape: a 15-years study. Mediterr Mar Sci 17:777–784. doi: 10.12681/mms.1816 CrossRefGoogle Scholar
  38. Gran G (1952) Determination of the equivalence point in potentiometric titrations of seawater with hydrochloric acid. Oceanol Acta 5:209–218Google Scholar
  39. Holmer M, Frederiksen MS (2007) Stimulation of sulfate reduction rates in Mediterranean fish farm sediments inhabited by the seagrass Posidonia oceanica. Biogeochemistry (Dordrecht) 85:169–184CrossRefGoogle Scholar
  40. Holmer M, Duarte CM, Marbá N (2003) Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments. Biogeochemistry 66:223–239CrossRefGoogle Scholar
  41. Holmer M, Duarte CM, Boschker HTS, Barrón C (2004) Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments. Aquat Microb Ecol 36(3):227–237. doi: 10.3354/ame036227 CrossRefGoogle Scholar
  42. Infantes E, Terrados J, Orfila A, Cañellas B, Álvarez-Ellacuria A (2009) Wave energy and the upper depth limit distribution of Posidonia oceanica. Bot Mar 52:419–427. doi: 10.1515/BOT.2009.050 CrossRefGoogle Scholar
  43. Invers O, Romero J, Pérez M (1997) Effects of pH on seagrass photosynthesis: a laboratory and field assessment. Aquat Bot 59:185–194CrossRefGoogle Scholar
  44. Ku TCW, Walter LM, Coleman ML, Blake RE, Martini AM (1999) Coupling between sulfur recycling and syndepositional carbonate dissolution: evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, USA. Geochim Cosmochim Acta 63:2529–2546CrossRefGoogle Scholar
  45. Lawton JH (1994) What do species do in ecosystems? Oikos 71:367–374. doi: 10.2307/3545824 CrossRefGoogle Scholar
  46. Lepoint G, Millet S, Dauby P, Gobert S, Bouquegneau JM (2002) Annual nitrogen budget of the seagrass Posidonia oceanica as determined by in situ uptake experiments. Mar Ecol Prog Ser 237:87–96CrossRefGoogle Scholar
  47. Lewis E, Wallace DWR (1998) CO2SYS-program developed for the CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak RidgeCrossRefGoogle Scholar
  48. Li X, Mander U (2009) Future options in landscape ecology: development and research. Prog Phys Geol 33:31–48. doi: 10.1177/0309133309103888 CrossRefGoogle Scholar
  49. López NI, Duarte CM, Vallespinós F, Romero J, Alcoverro T (1998) The effect of nutrient additions on bacterial activity in seagrass (Posidonia oceanica) sediments. J Exp Mar Biol Ecol 224:155–166. doi: 10.1016/S0022-0981(97)00189-5 CrossRefGoogle Scholar
  50. Marba N, Cebrian J, Enriquez S, Duarte CM (1996) Growth patterns of Western Mediterranean seagrasses: species-specific responses to seasonal forcing. Mar Ecol Prog Ser 133:203–215CrossRefGoogle Scholar
  51. Marbà N, Holmer M, Gacia E, Barron C (2006) Seagrass beds and coastal biogeochemistry. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Berlin, pp 135–157Google Scholar
  52. Mateo MA, Romero J (1997) Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget. Mar Ecol Prog Ser 151:43–53CrossRefGoogle Scholar
  53. Mazarrasa I, Marbà N, Lovelock CE, Serrano O, Lavery PS, Fourqurean JW, Kennedy H, Mateo MA, Krause-Jensen D, Steven ADL (2015) Seagrass meadows as a globally significant carbonate reservoir. Biogeosci Disc 12(16):4993–5003. doi: 10.5194/bg-12-4993-2015 CrossRefGoogle Scholar
  54. Mehrbach C, Culberson CH, Hawley JE, Pytkowicx RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907. doi: 10.4319/lo.1973.18.6.0897 CrossRefGoogle Scholar
  55. Molinier R, Picard J (1952) Recherches sur les herbiers de phanérogames marines du littoral méditerranéen français. Ann Inst Oceanogr 27:157–234Google Scholar
  56. Mutti M, Hallock P (2003) Carbonate systems along nutrient and temperature gradients: some sedimentological and geochemical constraints. Int J Earth Sci 92:465–475CrossRefGoogle Scholar
  57. Olesen B, Enríquez S, Duarte CM, Sand-Jensen K (2002) Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea. Mar Ecol Prog Ser 236:89–97CrossRefGoogle Scholar
  58. Ondiviela B, Losada IJ, Lara JL, Maza M, Galván C, Bouma TJ, van Belzen J (2014) The role of seagrasses in coastal protection in a changing climate. Coast Eng 87:158–168. doi: 10.1016/j.coastaleng.2013.11.005 CrossRefGoogle Scholar
  59. Pedersen MO, Serrano O, Mateo MA, Holmer M (2011) Temperature effects on decomposition of a Posidonia oceanica mat. Aquat Microb Ecol 65:169–182. doi: 10.3354/ame01543 CrossRefGoogle Scholar
  60. Prado P, Alcoverro T, Romero J (2009) Welcome mats? The role of seagrass meadow structure in controlling post-settlement survival in a keystone sea-urchin species. Estuar Coast Shelf Sci 85:472–478CrossRefGoogle Scholar
  61. Robbins BD, Bell SS (1994) Seagrass landscapes: a terrestrial approach to the marine subtidal environment. Trends Ecol Evol 9:301–304. doi: 10.1016/0169-5347(94)90041-8 CrossRefGoogle Scholar
  62. Romero J, Lee K-S, Pérez M, Mateo MA, Alcoverro T (2006) Nutrient dynamics in seagrass ecosystems. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Berlin, pp 227–254Google Scholar
  63. Serrano O, Mateo MA, Renom P, Julià R (2012) Characterization of soils beneath a Posidonia oceanica meadow. Geoderma 185–186:26–36. doi: 10.1016/j.geoderma.2012.03.020 CrossRefGoogle Scholar
  64. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Fisheries Research Board of CanadaGoogle Scholar
  65. Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Evol Syst 20:171–197CrossRefGoogle Scholar
  66. Vacchi M, Montefalcone M, Bianchi CN, Morri C, Ferrari M (2012) Hydrodynamic constraints to the seaward development of Posidonia oceanica meadows. Estuar Coast Shelf Sci 97:58–65. doi: 10.1016/j.ecss.2011.11.024 CrossRefGoogle Scholar
  67. Vacchi M, De Falco G, Simeone S, Montefalcone M, Morri C, Ferrari M, Bianchi CN (2017) Biogeomorphology of the Mediterranean Posidonia oceanica seagrass meadows. Earth Surf Proc Land 42:42–54. doi: 10.1002/esp.3932 CrossRefGoogle Scholar
  68. Weiss RF (1981) Determinations of carbon dioxide and methane by dual catalyst flame ionization chromatography and nitrous oxide by electron capture chromatography. J Chromatogr Sci 19:611–616CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Station de Recherches Sous-marines et Oceanographiques (STARESO)Haute-CorseFrance
  2. 2.Laboratory of Oceanology, MARE CentreUniversity of LiègeLiègeBelgium
  3. 3.Chemical Oceanography UnitUniversity of LiègeLiègeBelgium

Personalised recommendations