Marine Biology

, 164:156 | Cite as

The influence of native macroalgal canopies on the distribution and abundance of the non-native kelp Undaria pinnatifida in natural reef habitats

  • Rebecca De Leij
  • Graham Epstein
  • Matthew P. Brown
  • Dan A. Smale
Original paper

Abstract

The Asian kelp Undaria pinnatifida (‘Wakame’) is one of the most widespread invasive non-native species in coastal marine habitats and is fast approaching cosmopolitan status, yet its interactions with native species are poorly understood. Within the Plymouth Sound (UK) Special Area of Conservation (SAC), Undaria has become a conspicuous and important component of assemblages in shallow rocky reef habitats, where it co-exists with native canopy-forming brown macroalgae. We examined the hypothesis that rocky reef habitats supporting dense macroalgal canopies will have more biotic resistance to the invasion of Undaria compared with reef habitats supporting disturbed or sparse native canopies. Field surveys were completed at two spatial scales and sampling resolutions, and a short-term field-based canopy removal experiment was conducted to examine the influence of native macroalgal assemblages on the abundance, cover, biomass and morphology of Undaria. Field surveys indicated that Undaria was negatively related to the cover of macroalgal ‘competitors’, particularly Laminaria spp. However, multiple, large Undaria sporophytes were observed within dense native canopies, suggesting that disturbance to, or the absence of, canopies is not a prerequisite for Undaria colonisation. The short-term canopy removal experiment indicated that Undaria functions primarily as a pioneer species in this system. Where native canopies were left intact, Undaria sporophytes were far less abundant and were generally smaller with lower biomass compared with those in disturbed patches. The spread of Undaria into natural habitats is inhibited by the presence of native competitors, particularly large perennial species such as Laminaria spp., although the persistence of intact dense canopies does not completely prevent assimilation of Undaria into native assemblages.

Notes

Acknowledgements

D. A. S. is supported by an Independent Research Fellowship awarded by the Natural Environment Research Council of the UK (NE/K008439/1). G. E. is funded through the National Environmental Research Council (NERC) Doctoral Training Partnership ‘SPITFIRE’ (NE/L002531/1), administered through Southampton University. Fieldwork was supported by staff at the Marine Station at Plymouth University. We thank Harry Teagle for assistance with the canopy removal experiment, Andy Foggo for insightful comments on an earlier draft and two anonymous reviewers for constructive feedback that greatly improved the manuscript.

References

  1. Arenas F, Sanchez I, Hawkins SJ, Jenkins SR (2006) The invasibility of marine algal assemblages: role of functional diversity and identity. Ecology 87:2851–2861. doi: 10.1890/0012-9658(2006)87[2851:TIOMAA]2.0.CO;2
  2. Arnold M, Teagle H, Brown MP, Smale DA (2016) The structure and diversity of epibiotic assemblages associated with the invasive kelp Undaria pinnatifida in comparison to native habitat-forming macroalgae on a subtidal temperate reef. Biol Invasions 18:661–676. doi: 10.1007/s10530-015-1037-6 CrossRefGoogle Scholar
  3. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. doi: 10.18637/jss.v067.i01 CrossRefGoogle Scholar
  4. Bax N, Williamson A, Aguero M, Gonzalez E, Geeves W (2003) Marine invasive alien species: a threat to global biodiversity. Marine Policy 27:313–323. doi: 10.1016/s0308-597x(03)00041-1 CrossRefGoogle Scholar
  5. Bennett S, Wernberg T, de Bettignies T, Kendrick GA, Anderson RJ, Bolton JJ, Rodgers KL, Shears NT, Leclerc J-C, Leveque L, Davoult D, Christie HC (2015) Canopy interactions and physical stress gradients in subtidal communities. Ecol Lett 18:677–686. doi: 10.1111/ele.12446 CrossRefGoogle Scholar
  6. Bollen M, Pilditch CA, Battershill CN, Bischof K (2016) Salinity and temperature tolerance of the invasive alga Undaria pinnatifida and native New Zealand kelps: implications for competition. Mar Biol 163:194. doi: 10.1007/s00227-016-2954-3 CrossRefGoogle Scholar
  7. Byers JE, Reichard S, Randall JM, Parker IM, Smith CS, Lonsdale WM, Atkinson IAE, Seastedt TR, Williamson M, Chornesky E, Hayes D (2002) Directing research to reduce the impacts of nonindigenous species. Conserv Biol 16:630–640. doi: 10.1046/j.1523-1739.2002.01057.x CrossRefGoogle Scholar
  8. Campbell SJ, Bite JS, Burridge TR (1999) Seasonal patterns in the photosynthetic capacity, tissue pigment and nutrient content of different developmental stages of Undaria pinnatifida (Phaeophyta: Laminariales) in Port Phillip Bay, south-eastern Australia. Bot Mar 42:231–241CrossRefGoogle Scholar
  9. Casas G, Scrosati R, Piriz ML (2004) The invasive kelp Undaria pinnatifida (Phaeophyceae, Laminariales) reduces native seaweed diversity in Nuevo Gulf (Patagonia, Argentina). Biol Invasions 6:411–416CrossRefGoogle Scholar
  10. Castric-Fey A, Beaupoil C, Bouchain J, Pradier E, L’Hardy-Halos MT (1999) The introduced alga Undaria pinnatifida (Laminariales, Alariaceae) in the rocky shore ecosystem of the St Malo area: morphology and growth of the sporophyte. Bot Mar 42:71–82. doi: 10.1515/bot.1999.010 Google Scholar
  11. Choi HG, Young SK, Soon JL, Eun JP, Ki WN (2005) Effects of daylength, irradiance and settlement density on the growth and reproduction of Undaria pinnatifida gametophytes. J Appl Phycol 17:423–430. doi: 10.1007/s10811-005-0432-2 CrossRefGoogle Scholar
  12. Clarke KR, Gorley RN, Somerfield PJ, Warwick RM (2014) Change in marine communities: an approach to statistical analysis and interpretation, 3rd edn. PRIMER-E, PlymouthGoogle Scholar
  13. Core Team R (2015) R: a language and environment for statistical computing. Austria, ViennaGoogle Scholar
  14. Crooks JA (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12:316–329CrossRefGoogle Scholar
  15. Dean PR, Hurd CL (2007) Seasonal growth, erosion rates, and nitrogen and photosynthetic ecophysiology of Undaria pinnatifida (heterokontophyta) in southern New Zealand. J Phycol 43:1138–1148CrossRefGoogle Scholar
  16. Edgar GJ, Barrett NS, Morton AJ, Samson CR (2004) Effects of algal canopy clearance on plant, fish and macroinvertebrate communities on eastern Tasmanian reefs. J Exp Mar Biol Ecol 312:67–87. doi: 10.1016/j.jembe.2004.06.005 CrossRefGoogle Scholar
  17. Farrell P, Fletcher RL (2006) An investigation of dispersal of the introduced brown alga Undaria pinnatifida (Harvey) Suringar and its competition with some species on the man-made structures of Torquay Marina (Devon, UK). J Exp Mar Biol Ecol 334:236–243. doi: 10.1016/j.jembe.2006.02.006 CrossRefGoogle Scholar
  18. Fletcher RL, Farrell P (1999) Introduced brown algae in the North East Atlantic, with particular respect to Undaria pinnatifida (Harvey) Suringar. Helgolander Meeresuntersuchungen 52:259–275. doi: 10.1007/bf02908901 CrossRefGoogle Scholar
  19. Fletcher RL, Manfredi C (1995) The occurrence of Undaria pinnatifida (Phaeophyceae, Laminariales) on the south coast of England. Bot Mar 38:355–358. doi: 10.1515/botm.1995.38.1-6.355 CrossRefGoogle Scholar
  20. Floc’h JY, Pajot R, Wallentinus I (1991) The Japanese brown alga Undaria pinnatifida on the coast of France and its possible establishment in European waters. ICES J Mar Sci 47:379–390. doi: 10.1093/icesjms/47.3.379 CrossRefGoogle Scholar
  21. Floc’h J-Y, Pajot R, Mouret V (1996) Undaria pinnatifida (Laminariales, Phaeophyta) 12 years after its introduction into the Atlantic Ocean. Hydrobiologia 326(327):217–222. doi: 10.1007/bf00047810 CrossRefGoogle Scholar
  22. Flukes EB, Johnson CR, Wright JT (2014) Thinning of kelp canopy modifies understory assemblages: the importance of canopy density. Mar Ecol Prog Ser 514:57–70. doi: 10.3354/meps10964 CrossRefGoogle Scholar
  23. Forrest BM, Taylor MD (2002) Assessing invasion impact: survey design considerations and implications for management of an invasive marine plant. Biol Invasions 4:375–386CrossRefGoogle Scholar
  24. Fowler-Walker MJ, Wernberg T, Connell SD (2005) Differences in kelp morphology between wave sheltered and exposed localities: morphologically plastic or fixed traits? Mar Biol 148:755–767. doi: 10.1007/s00227-005-0125-z CrossRefGoogle Scholar
  25. Gao X, Endo H, Taniguchi K, Agatsuma Y (2014) Effects of experimental thinning on the growth and maturation of the brown alga Undaria pinnatifida (Laminariales; Phaeophyta) cultivated in Matsushima Bay, northern Japan. J Appl Phycol 26:529–535. doi: 10.1007/s10811-013-0071-y CrossRefGoogle Scholar
  26. Glasby TM, Connell SD, Holloway MG, Hewitt CL (2007) Nonindigenous biota on artificial structures: could habitat creation facilitate biological invasions? Mar Biol 151:887–895. doi: 10.1007/s00227-006-0552-5 CrossRefGoogle Scholar
  27. Goodsell PJ, Connell SD (2005) Disturbance initiates diversity in recruitment of canopy-forming algae: interactive effects of canopy-thinning and substratum availability. Phycologia 44:632–639. doi: 10.2216/0031-8884(2005)44[632:didiro]2.0.co;2
  28. Harrison XA (2014) Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2:e616. doi: 10.7717/peerj.616 CrossRefGoogle Scholar
  29. Hay CH (1990) The dispersal of sporophytes of Undaria pinnatifida by coastal shipping in New Zealand, and implications for further dispersal of Undaria in France. Brit Phycol J 25:301–313CrossRefGoogle Scholar
  30. Heiser S, Hall-Spencer JM, Hiscock K (2014) Assessing the extent of establishment of Undaria pinnatifida in Plymouth Sound Special Area of Conservation, UK. Marine Biodivers Rec 7:e93. doi: 10.1017/s1755267214000608 CrossRefGoogle Scholar
  31. Henkel SK, Hofmann GE (2008) Thermal ecophysiology of gametophytes cultured from invasive Undaria pinnatifida (Harvey) Suringar in coastal California harbors. J Exp Mar Biol Ecol 367:164–173. doi: 10.1016/j.jembe.2008.09.010 CrossRefGoogle Scholar
  32. Hiscock K, Southward A, Tittley I, Hawkins S (2004) Effects of changing temperature on benthic marine life in Britain and Ireland. Aquat Conserv Marine Freshw Ecosyst 14:333–362. doi: 10.1002/aqc.628 CrossRefGoogle Scholar
  33. Irigoyen AJ, Trobbiani G, Sgarlatta MP, Raffo MP (2011) Effects of the alien algae Undaria pinnatifida (Phaeophyceae, Laminariales) on the diversity and abundance of benthic macrofauna in Golfo Nuevo (Patagonia, Argentina): potential implications for local food webs. Biol Invasions 13:1521–1532. doi: 10.1007/s10530-010-9910-9 CrossRefGoogle Scholar
  34. James K, Shears NT (2016) Proliferation of the invasive kelp Undaria pinnatifida at aquaculture sites promotes spread to coastal reefs. Mar Biol 163:1–12. doi: 10.1007/s00227-015-2811-9 CrossRefGoogle Scholar
  35. James K, Kibele J, Shears NT (2015) Using satellite-derived sea surface temperature to predict the potential global range and phenology of the invasive kelp Undaria pinnatifida. Biol Invasions 17:3393–3408. doi: 10.1007/s10530-015-0965-5 CrossRefGoogle Scholar
  36. Kim YS, Nam KW (1997) Temperature and light responses on the growth and maturation of gametophytes of Undaria pinnatifida (Harvey) Suringar in Korea. J Korean Fish Soc 30:505–510Google Scholar
  37. Knights AM, Firth LB, Thompson RC, Yunnie ALE, Hiscock K, Hawkins SJ (2016) Plymouth—a world harbour through the ages. Reg Stud Mar Sci 8:297–307. doi: 10.1016/j.rsma.2016.02.002 CrossRefGoogle Scholar
  38. Krumhansl KA, Scheibling RE (2012) Detrital subsidy from subtidal kelp beds is altered by the invasive green alga Codium fragile ssp. fragile. Mar Ecol Prog Ser 456:73–85. doi: 10.3354/meps09671 CrossRefGoogle Scholar
  39. Langston WJ, Chesman BS, Burt GR, Hawkins SJ, Readman J, Worsfold P (2003) Site Characterisation of the South West European Marine Sites: Plymouth Sound and Estuaries cSAC, SPA. Marine Biological Association Ocassional publication No. 9Google Scholar
  40. Leinaas HF, Christie H (1996) Effects of removing sea urchins (Strongylocentrotus droebachiensis): stability of the barren state and succession of kelp forest recovery in the east Atlantic. Oecologia 105:524–536CrossRefGoogle Scholar
  41. Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15–26CrossRefGoogle Scholar
  42. Ling SD, Scheibling RE, Rassweiler A, Johnson CR, Shears N, Connell SD, Salomon AK, Norderhaug KM, Pérez-Matus A, Hernández JC, Clemente S, Blamey LK, Hereu B, Ballesteros E, Sala E, Garrabou J, Cebrian E, Zabala M, Fujita D, Johnson LE (2015) Global regime shift dynamics of catastrophic sea urchin overgrazing. Philos Trans R Soc B Biol Sci 370:1–10. doi: 10.1098/rstb.2013.0269 Google Scholar
  43. Lowe S, Browne M, Boudjekas S, De Poorter M (2000) 100 of the world’s worst invasive alien species. The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN)Google Scholar
  44. Minchin D, Nunn J (2014) The invasive brown alga Undaria pinnatifida (Harvey) Suringar, 1873 (Laminariales: Alariaceae), spreads northwards in Europe. BioInvasions Rec 3:57–63. doi: 10.3391/bir.2014.3.2.01 CrossRefGoogle Scholar
  45. Morelissen B, Dudley BD, Geange SW, Phillips NE (2013) Gametophyte reproduction and development of Undaria pinnatifida under varied nutrient and irradiance conditions. J Exp Mar Biol Ecol 448:197–206. doi: 10.1016/j.jembe.2013.07.009 CrossRefGoogle Scholar
  46. Morelissen B, Dudley BD, Phillips NE (2016) Recruitment of the invasive kelp Undaria pinnatifida does not always benefit from disturbance to native algal communities in low-intertidal habitats. Mar Biol 163:241. doi: 10.1007/s00227-016-3014-8 CrossRefGoogle Scholar
  47. NBN (2017) NBN Gateway. https://data.nbn.org.uk/. Accessed 19 Jan 2017
  48. Norton TA, Burrows EM (1969) Studies on marine algae of the British Isles. 7. Saccorhiza polyschides (Lightf.) Batt. Brit Phycol J 4:19–53. doi: 10.1080/00071616900650031 CrossRefGoogle Scholar
  49. Pedersen MF, Nejrup LB, Pedersen TM, Fredriksen S (2014) Sub-canopy light conditions only allow low annual net productivity of epiphytic algae on kelp Laminaria hyperborea. Mar Ecol Prog Ser 516:163–176. doi: 10.3354/meps11019 CrossRefGoogle Scholar
  50. Perez R, Lee JY, Juge C (1981) Observations sur la biologie de l’algue japonaise Undaria pinnatifida (Harvey) Suringar introduite accidentellement dans l’Etang de Thau. Sci et Peche 325:1–12Google Scholar
  51. Raffo PM, Eyras CM, Iribarne OO (2009) The invasion of Undaria pinnatifida to a Macrocystis pyrifera kelp in Patagonia (Argentina, south-west Atlantic). J Marine Biol Assoc UK 89:1571–1580. doi: 10.1017/s002531540900071x CrossRefGoogle Scholar
  52. Rinde E, Christie H, Fagerli CW, Bekkby T, Gundersen H, Norderhaug KM, Hjermann DØ (2014) The influence of physical factors on kelp and sea urchin distribution in previously and still grazed areas in the NE Atlantic. PLoS One. doi: 10.1371/journal.pone.0100222 Google Scholar
  53. Ruiz GM, Carlton JT, Grosholz ED, Hines AH (1997) Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences. Am Zool 37:621–632CrossRefGoogle Scholar
  54. Russell LK, Hepburn CD, Hurd CL, Stuart MD (2008) The expanding range of Undaria pinnatifida in southern New Zealand: distribution, dispersal mechanisms and the invasion of wave-exposed environments. Biol Invasions 10:103–115. doi: 10.1007/s10530-007-9113-1 CrossRefGoogle Scholar
  55. Saito Y (1975) Undaria. In: Toshida J, Hirose H (eds) Advance of Phycology in Japan. VEB Gustav Fischer Verlag, The Hague, pp 304–320Google Scholar
  56. Schaffelke B, Hewitt CL (2007) Impacts of introduced seaweeds. Bot Mar 50:397–417. doi: 10.1515/bot.2007.044 CrossRefGoogle Scholar
  57. Shibneva SY, Skriptsova AV, Shan TF, Pang SJ (2013) The different morphs of Undaria pinnatifida (Phaeophyceae, Laminariales) in Peter the Great Bay (Sea of Japan) are phenotypic variants: direct evidence. J Appl Phycol 25:1909–1916. doi: 10.1007/s10811-013-0013-8 CrossRefGoogle Scholar
  58. Smale DA, Vance T (2016) Climate-driven shifts in species’ distributions may exacerbate the impacts of storm disturbances on North-east Atlantic kelp forests. Mar Freshw Res 67:65–74. doi: 10.1071/mf14155 CrossRefGoogle Scholar
  59. Smale DA, Burrows MT, Moore P, O’Connor N, Hawkins SJ (2013) Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecol Evolut 3:4016–4038. doi: 10.1002/ece3.774 CrossRefGoogle Scholar
  60. Smyth TJ, Fishwick JR, Al-Moosawi L, Cummings DG, Harris C, Kitidis V, Rees A, Martinez-Vicente V, Woodward EMS (2010) A broad spatio-temporal view of the Western English Channel observatory. J Plankton Res 32:585–601. doi: 10.1093/plankt/fbp128 CrossRefGoogle Scholar
  61. South PM, Thomsen MS (2016) The ecological role of invading Undaria pinnatifida: an experimental test of the driver–passenger models. Mar Biol 163:175. doi: 10.1007/s00227-016-2948-1 CrossRefGoogle Scholar
  62. South PM, Lilley SA, Tait LW, Alestra T, Hickford MJH, Thomsen MS, Schiel DR (2015) Transient effects of an invasive kelp on the community structure and primary productivity of an intertidal assemblage. Mar Freshw Res 67:103–112. doi: 10.1071/mf14211 CrossRefGoogle Scholar
  63. Stachowicz JJ, Fried H, Osman RW, Whitlatch RB (2002) Biodiversity, invasion resistance, and marine ecosystem function: reconciling pattern and process. Ecology 83:2575–2590CrossRefGoogle Scholar
  64. Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459. doi: 10.1017/s0376892902000322 CrossRefGoogle Scholar
  65. Stuart M (2003) Review of research on Undaria pinnatifida in New Zealand and its potential impacts on the eastern coast of the South Island. Department of Conservation, WellingtonGoogle Scholar
  66. Tait LW, South PM, Lilley SA, Thomsen MS, Schiel DR (2015) Assemblage and understory carbon production of native and invasive canopy-forming macroalgae. J Exp Mar Biol Ecol 469:10–17. doi: 10.1016/j.jembe.2015.04.007 CrossRefGoogle Scholar
  67. Teagle H, Hawkins SJ, Moore PJ, Smale DA (2017) The role of kelp species as biogenic habitat formers in coastal marine ecosystems. J Exp Marine Biol Ecol. doi: 10.1016/j.jembe.2017.01.017 Google Scholar
  68. Thompson GA, Schiel DR (2012) Resistance and facilitation by native algal communities in the invasion success of Undaria pinnatifida. Mar Ecol Prog Ser 468:95–105. doi: 10.3354/meps09995 CrossRefGoogle Scholar
  69. Valentine JP, Johnson CR (2003) Establishment of the introduced kelp Undaria pinnatifida in Tasmania depends on disturbance to native algal assemblages. J Exp Mar Biol Ecol 295:63–90. doi: 10.1016/s0022-0981(03)00272-7 CrossRefGoogle Scholar
  70. Valentine JP, Johnson CR (2004) Establishment of the introduced kelp Undaria pinnatifida following dieback of the native macroalga Phyllospora comosa in Tasmania, Australia. Mar Freshw Res 55:223–230. doi: 10.1071/mf03048 CrossRefGoogle Scholar
  71. Valentine JP, Johnson CR (2005) Persistence of the exotic kelp Undaria pinnatifida does not depend on sea urchin grazing. Mar Ecol Prog Ser 285:43–55CrossRefGoogle Scholar
  72. Veiga P, Torres AC, Rubal M, Troncoso J, Sousa-Pinto I (2014) The invasive kelp Undaria pinnatifida (Laminariales, Ochrophyta) along the north coast of Portugal: distribution model versus field observations. Mar Pollut Bull 84:363–365. doi: 10.1016/j.marpolbul.2014.05.038 CrossRefGoogle Scholar
  73. Watanabe Y, Nishihara GN, Tokunaga S, Terada R (2014) The effect of irradiance and temperature responses and the phenology of a native alga, Undaria pinnatifida (Laminariales), at the southern limit of its natural distribution in Japan. J Appl Phycol 26:2405–2415. doi: 10.1007/s10811-014-0264-z CrossRefGoogle Scholar
  74. Wernberg T, Thomsen MS (2005) The effect of wave exposure on the morphology of Ecklonia radiata. Aquat Bot 83:61–70. doi: 10.1016/j.aquabot.2005.05.007 CrossRefGoogle Scholar
  75. Wernberg T, Kendrick GA, Toohey BD (2005) Modification of the physical environment by an Ecklonia radiata (Laminariales) canopy and implications for associated foliose algae. Aquat Ecol 39:419–430. doi: 10.1007/s10452-005-9009-z CrossRefGoogle Scholar
  76. Wickham H (2009) gplot2: elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar
  77. Wickham H, Francois R (2015) dplyr: A grammar of data manipulation [Software] (R package version 0.4. 3). https://cran.r-project.org/package=dplyr
  78. Williams SL, Smith JE (2007) A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annu Rev Ecol Evol Syst 38:327–359. doi: 10.1146/annurev.ecolsys.38.091206.095543 CrossRefGoogle Scholar
  79. Wu C, Li D, Liu H, Peng G, Liu J (2004) Mass culture of Undaria gametophyte clones and their use in sporeling culture. In: Ang PO (ed) Asian Pacific Phycology in the 21st century: prospects and challenges: Proceeding of The Second Asian Pacific Phycological Forum, held in Hong Kong, China, 21–25 June 1999. Springer, Dordrecht, pp 153–156Google Scholar
  80. Yesson C, Bush LE, Davies AJ, Maggs CA, Brodie J (2015) The distribution and environmental requirements of large brown seaweeds in the British Isles. J Marine Biol Assoc UK 95:669–680. doi: 10.1017/s0025315414001453 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Rebecca De Leij
    • 1
    • 2
  • Graham Epstein
    • 2
  • Matthew P. Brown
    • 3
  • Dan A. Smale
    • 2
  1. 1.Marine Biology and Ecology Research CentrePlymouth UniversityPlymouthUK
  2. 2.Marine Biological Association of the United KingdomPlymouthUK
  3. 3.Marine Station, School of Marine Science and EngineeringPlymouth UniversityPlymouthUK

Personalised recommendations