Advertisement

Marine Biology

, 164:136 | Cite as

Effects of copepods on natural microplankton communities: do they exert top-down control?

  • Laia Armengol
  • Gara Franchy
  • Alicia Ojeda
  • Ángelo Santana-del Pino
  • Santiago Hernández-León
Original paper

Abstract

Top-down effects in the pelagic realm are quite well known in freshwater ecosystems. However, our knowledge of these effects in the ocean remains scant. It is known that copepods prefer to prey on ciliates and heterotrophic dinoflagellates, and their high or low abundances can change the structure of microplankton communities. Field studies in subtropical waters have shown parallel increases of mesozooplankton and phytoplankton without a lag, suggesting a top-down effect of mesozooplankton preying upon microzooplankton and releasing primary producers from predation. In the present work, we added copepods at increasing densities to natural plankton in 24 h experiments. A decrease in aloricated ciliates abundance of nearly 50% and increases in the abundances of picoeukaryotes, Synechococcus, Prochlorococcus, diatoms, and chlorophyll a were observed. No effect of nutrient additions was observed in parallel grazing experiments. Thus, a top-down effect of copepods upon microzooplankton explains the observed changes in the abundance of the different phytoplankton groups. Copepods promote important changes down the food web, structuring the community by predation upon microzooplankton. There are biogeochemical consequences of zooplankton variability over short time scales in the ocean.

Notes

Acknowledgements

We wish to thank Sabrina Sánchez, Almudena Valenciano, Lidia Nieves, Valeria Anabalón, and Claire Schmoker for their help onboard. We also wish to thank David Morales for the time spent in carrying out the experimental work. This study was financially supported by projects Lucifer (CTM2008-03538), Malaspina (CSD2008-00077), Mafia (CTM2012-39587), and Bathypelagic (CTM2016-78853-R). Funding was provided by Ministerio de Economía y Competitividad.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

227_2017_3165_MOESM1_ESM.pdf (124 kb)
Supplementary material 1 (PDF 124 kb)

References

  1. Allan JD, Richman S, Heinle DR, Huff R (1977) Grazing in juvenile stages of some estuarine calanoid copepods. Mar Biol 43:317–331CrossRefGoogle Scholar
  2. Andreae MO, Andreae TW, Meyerdierks D, Thiel C (2003) Marine sulfur cycling and the atmospheric aerosol over the springtime North Atlantic. Chemosphere 52:1321–1343CrossRefGoogle Scholar
  3. Beers JR, Stewart GL (1967) Micro-zooplankton in the euphotic zone at five locations across the California current. J Fish Res Board Can 24:2053–2068CrossRefGoogle Scholar
  4. Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755CrossRefGoogle Scholar
  5. Benoit-Bird KJ, Shroyer EL, McManus MA (2013) A critical scale in plankton aggregations across coastal ecosystems. Geophys Res Lett 40:1–7CrossRefGoogle Scholar
  6. Berggreen U, Hansen B, Kiørboe T (1988) Food size spectra ingestion and growth of the copepod Acartia tonsa during development: implications for determination of copepod production. Mar Biol 99:341–352CrossRefGoogle Scholar
  7. BjØrnsen PK, Kuparinen J (1991) Growth and herbivory by heterotrophic dinoflagellates in the Southern Ocean, studied by microcosm experiments. Mar Biol 109:397–405CrossRefGoogle Scholar
  8. Blackbourn DJ (1974) The feeding biology of tintinnid Protozoa and some other inshore microzooplankton. PhD dissertation, University of British ColumbiaGoogle Scholar
  9. Bode A, Barquero S, Varela M, Braun JG, de Armas D (2001) Pelagic bacteria and phytoplankton in oceanic waters near the Canary Islands in summer. Mar Ecol Prog Ser 209:1–17CrossRefGoogle Scholar
  10. Borsheim KY, Bratbak G (1987) Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Mar Ecol Prog Ser 36:171–175CrossRefGoogle Scholar
  11. Broglio E, Jonasdottir SH, Calbet A, Jakobsen HH, Saiz E (2003) Effect of heterotrophic versus autotrophic food on feeding and reproduction of the calanoid copepod Acartia tonsa: relationship with prey fatty acid composition. Aquat Microb Ecol 31:267–278CrossRefGoogle Scholar
  12. Broglio E, Saiz E, Calbet A, Trepat I, Alcaraz M (2004) Trophic impact and prey selection by crustacean zooplankton on the microbial communities of an oligotrophic coastal area (NW Mediterranean). Aquat Microb Ecol 35:65–78CrossRefGoogle Scholar
  13. Burkill PH, Edwards ES, John AWG, Sleigh MA (1993) Microzooplankton and their herbivorous activity in the northeastern Atlantic Ocean. Deep Sea Res Part II 40:479–493CrossRefGoogle Scholar
  14. Calbet A, Landry MR (1999) Mesozooplankton influences on the microbial food web: direct and indirect trophic interactions in the oligotrophic open ocean. Limnol Oceanogr 44:1370–1380CrossRefGoogle Scholar
  15. Calbet A, Landry MR (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr 49:51–57CrossRefGoogle Scholar
  16. Calbet A, Saiz E (2005) The ciliate-copepod link in marine ecosystems. Aquat Microb Ecol 38:157–167CrossRefGoogle Scholar
  17. Campbell AS (1926) The cytology of Tintinnopsis nucula (FOL) Laackmann with an account of its neuromotor apparatus division and a new intranuclear parasite, vol 29. Publication Zoology, University of California, Berkeley, pp 179–236Google Scholar
  18. Campbell AS (1927) Studies on the marine ciliate Favella (Jörgensen), with special regard to the neuromotor apparatus and its role in the formation of the lorica, vol 29. Publication Zoology, University of California, Berkeley, pp 429–452Google Scholar
  19. Carpenter SR, Cole JJ, Hodgson JR (1985) Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecol Monogr 71:163–186CrossRefGoogle Scholar
  20. Cullen JJ, Lewis MR, Davis CO, Barber RT (1992) Photosynthetic characteristics and estimated growth rates indicate grazing is the proximate control of primary production in the equatorial Pacific. J Geophys Res 97:639–654CrossRefGoogle Scholar
  21. Dam HG, Zhang X, Bulter M, Roman MR (1995) Mesozooplankton grazing and metabolism at the equator in the central Pacific: implications for carbon and nitrogen fluxes. Deep Sea Res Part II 42:735–756CrossRefGoogle Scholar
  22. DeMott W (1989) Optimal foraging theory as a predictor of chemically mediated food selection by suspension-feeding copepods. Limnol Oceanogr 34:140–154CrossRefGoogle Scholar
  23. Donaghay PL, Small LT (1979) Food selection capabilities of the estuarine copepod Acartia clausii. Mar Biol 52:137–146CrossRefGoogle Scholar
  24. Fessenden L, Cowles TJ (1994) Copepod predation on phagotrophic ciliates in Oregon coastal waters. Mar Ecol Prog Ser 107:103–111CrossRefGoogle Scholar
  25. Finenko ZZ, Piontkovski SA, Williams R, Mishonov AV (2003) Variability of phytoplankton and mesozooplankton biomass in the subtropical and tropical Atlantic Ocean. Mar Ecol Prog Ser 250:125–144CrossRefGoogle Scholar
  26. Frost BW (1972) Effect of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol Oceanogr 17:805–815CrossRefGoogle Scholar
  27. Gold K (1968) Some observations on the biology of Tintinnopsis. J Protozool 15:193–194CrossRefGoogle Scholar
  28. Gold K (1969) Feeding experiments and lorica development. J Protozool 16:507–509CrossRefGoogle Scholar
  29. Gold K (1973) Methods for growing Tintinnida in continuous culture. Am Zool 13:203–208CrossRefGoogle Scholar
  30. Haas LW (1982) Improved epifluorescence microscopy for observing planktonic micro-organisms. Ann Inst Oceanogr Paris 58:261–266Google Scholar
  31. Hansen PJ (1992) Particle size selection, feeding rates and growth dynamics of marine heterotrophic dinoflagellates, with special emphasis on Gyrodinium spirale. Mar Biol 114:327–334CrossRefGoogle Scholar
  32. Hernández-León S (1998) Annual cycle of epiplanktonic copepods in Canary Islands waters. Fish Oceanogr 7:252–257CrossRefGoogle Scholar
  33. Hernández-León S (2009) Top-down effects and carbon flux in the ocean: a hypothesis. J Mar Syst 78:576–581CrossRefGoogle Scholar
  34. Hernández-León S, Torres S (1997) The relationship between ammonia excretion and GDH activity in marine zooplankton. J Plankton Res 19:587–601CrossRefGoogle Scholar
  35. Hernández-León S, Franchy G, Moyano M, Menéndez I, Schmoker C, Putzeys S (2010) Carbon sequestration and zooplankton lunar cycles: could web e missing a major component of the biological pump? Limnol Oceanogr 55:2503–2512CrossRefGoogle Scholar
  36. Hollibaugh JT, Fuhrman JA, Azam F (1980) Radioactively labeling of natural assemblages of bacterioplankton for use in trophic studies. Limnol Oceanogr 25:172–181CrossRefGoogle Scholar
  37. Huntley MR (1982) Yellow water in La Jolla Bay, California, July 1980. II. Suppression of zooplankton grazing. J Exp Mar Biol Ecol 63:81–91CrossRefGoogle Scholar
  38. Ikeda T (1985) Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature. Mar Biol 85:1–11CrossRefGoogle Scholar
  39. Isari S, Antó M, Saiz E (2013) Copepod foraging on the basis of food nutritional quality: can copepods really choose? PLoS One 8(12):e84742. doi: 10.1371/journal.pone.0084742 CrossRefGoogle Scholar
  40. Isla JA, Llope M, Anadón R (2004) Size fractioned mesozooplankton biomass, metabolism and grazing along a 50°N–30°S transect of the Atlantic Ocean. J Plankton Res 26:1301–1313CrossRefGoogle Scholar
  41. Landry MR, Hassett R (1982) Estimating the grazing impact of marine micro-zooplankton. Mar Biol 67:283–288CrossRefGoogle Scholar
  42. Landry MR, Constantinou J, Kirshtein J (1995) Microzooplankton grazing in the central equatorial Pacific during February and August, 1992. Deep Sea Res Part II 42:657–671CrossRefGoogle Scholar
  43. Landry MR, Brown SL, Campbell L, Constantinou J, Liu H (1998) Spatial patterns in phytoplankton growth and microzooplankton grazing in the Arabian Sea during monsoon forcing. Deep Sea Res Part II 45:2353–2368CrossRefGoogle Scholar
  44. Libourel Houde S, Roman MR (1987) Effect of food quality on the functional ingestion response of the copepod Acartia tonsa. Mar Ecol Progr Ser 40:69–77CrossRefGoogle Scholar
  45. Löder MGJ, Meunier C, Wiltshire KH, Boersma M, Aberle N (2011) The role of ciliates, heterotrophic dinoflagellates and copepods in structuring spring plankton communities at Helgoland Roads, North Sea. Mar Biol 158:1551–1580CrossRefGoogle Scholar
  46. Longhurst AR (1991) Role of the marine biosphere in the global carbon cycle. Limnol Oceanogr 36:1507–1526CrossRefGoogle Scholar
  47. Malej A, Harris RP (1993) Inhibition of copepod grazing by diatom exudates: a factor in the development of mucus aggregates? Mar Ecol Prog Ser 96:33–42CrossRefGoogle Scholar
  48. Marcolin CR, Lopes RL, Jackson GA (2015) Estimating zooplankton vertical distribution from combined LOPC and ZooScan observations on the Brazilian Coast. Mar Biol 162:2171–2186CrossRefGoogle Scholar
  49. McManus MA, Alldredge AL, Barnard AH, Boss E, Case JF, Cowles TJ, Donaghay PL, Eisner LB, Gifford DJ, Greenlaw CF, Herren CM, Holliday DV, Johnson D, MacIntryre S, McGehee DM, Osborn TR, Perry MJ, Pieper RE, Rines JEB, Smith DC, Sullivan JM, Talbot MK, Twardowski MS, Weidemann A, Zaneveld JR (2003) Characteristics, distribution and persistence of thin layers over a 48 hour period. Mar Ecol Prog Ser 261:1–19CrossRefGoogle Scholar
  50. Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protest plankton. Limnol Oceanogr 45:569–579CrossRefGoogle Scholar
  51. Meunier CL, Boersma M, Wiltshire KH, Malzahn AM (2016) Zooplankton eat what they need: copepod selective feeding and potential consequences for marine systems. Oikos 125:50–58CrossRefGoogle Scholar
  52. Nakamura Y, Yamakazi Y, Hiromi J (1992) Growth and grazing of a heterotrophic dinoflagellate, Gyrodinium dominans, feeding on a red-tide flagellate, Chattonella antiqua. Mar Ecol Prog Ser 82:275–279CrossRefGoogle Scholar
  53. Nakamura Y, Suzuki S, Hiromi J (1995) Growth and grazing of a naked heterotrophic dinoflagellate, Gyrodinium dominans. Aquat Microb Ecol 9:157–164CrossRefGoogle Scholar
  54. Nival P, Nival S (1976) Particle retention efficiencies of an herbivorous copepod, Acartia clause (adult and copepodite stages): effects of grazing. Limnol Oceangr 21:24–38CrossRefGoogle Scholar
  55. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Statistics and computing. Springer, BerlinCrossRefGoogle Scholar
  56. Pinheiro J, Bates D, DebRoy S, Deepayan S, R Development Core Team (2011) Linear and nonlinear mixed effects models. R package version 3:1–102Google Scholar
  57. Poulsen LK, Moldrup M, T Berge, Hansen PJ (2011) Feeding on copepod fecal pellets: a new trophic role of dinoflagellates as detritivores. Mar Ecol Prog Ser 441:65–78CrossRefGoogle Scholar
  58. Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097–1103CrossRefGoogle Scholar
  59. Schmoker C, Arístegui J, Hernández-Léon S (2012) Planktonic biomass variability during a late winter bloom in the subtropical waters off the Canary Islands. ICES J Mar Sci 95:24–31Google Scholar
  60. Sieburth JMCN, Smetacek V, Lenz J (1978) Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol Oceanogr 23:1256–1263CrossRefGoogle Scholar
  61. Simpson SJ, Raubenheimer D (2012) The nature if nutrition: a unifying framework from animal adaptation to human obesity. Princeton University Press, PrincetonCrossRefGoogle Scholar
  62. Stibor H, Vadstein O, Diehl S, Gelzleichter A, Hansen T, Hantzche F, Katechakis A, Lippert B, Løseth K, Peters C, Roederer W, Sandow M, Sundt-Hansen L, Olsen Y (2004a) Copepods act as a switch between alternative trophic cascades in marine pelagic food webs. Ecol Lett 7:321–328CrossRefGoogle Scholar
  63. Stibor H, Vadstein O, Lippert B, Roederer W, Olsen Y (2004b) Calanoid copepods and nutrient enrichment determine population dynamics of the appendicularian Oikopleura dioica: a mesocosm experiment. Mar Ecol Prog Ser 270:209–215CrossRefGoogle Scholar
  64. Stoecker DK, Capuzzo JM (1990) Predation on protozoa: its importance to zooplankton. J Plankton Res 12:891–908CrossRefGoogle Scholar
  65. Strathmann RR (1967) Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol Oceanogr 12(3):411–418CrossRefGoogle Scholar
  66. Strom SL (1991) Growth and grazing rates of the herbivorous dinoflagellate Gymnodinium sp. From the open subarctic Pacific Ocean. Mar Ecol Prog Ser 78:103–113CrossRefGoogle Scholar
  67. Suzuki MT (1999) Effect of protistan bacterivory on coastal bacterioplankton diversity. Aquat Microb Ecol 20:261–272CrossRefGoogle Scholar
  68. Ueda A, Kuwahara A, Tanaka M, Azeta M (1983) Underwater observations on copepod swarms in temperate and subtropical waters. Mar Ecol Prog Ser 11:165–171CrossRefGoogle Scholar
  69. Vadstein O, Stibor H, Lippert B, Løseth K, Roederer W, Sundt-Hansen L, Olsen Y (2004) Moderate increase in the biomass of omnivorous copepods may ease grazing control of planktonic algae. Mar Ecol Prog Ser 270:199–207CrossRefGoogle Scholar
  70. Verity PG, Langdon C (1984) Relationships between lorica volume, carbon, nitrogen and ATP content of tintinnids in Narragansett Bay. J Plankton Res 6:859–868CrossRefGoogle Scholar
  71. Verity PG, Robertson CY, Tronzo CR, Andrews MG, Nelson JR, Sieracki ME (1992) Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol Oceanogr 37:1434–1446CrossRefGoogle Scholar
  72. Wells ML, Vallis GK, Silver EA (1999) Tectonic processes in Papua New Guinea and past productivity in the eastern equatorial Pacific Ocean. Nature 398:601–604CrossRefGoogle Scholar
  73. Wickham SA (1995) Cyclops predation on ciliates: species-specific differences and functional responses. J Plankton Res 20:739–755CrossRefGoogle Scholar
  74. Yentsch CS, Menzel DW (1963) A method for the determination of phytoplankton chlorophyll and phaeophytin fluorescence. Deep-Sea Res 10:221–231Google Scholar
  75. Zubkov MV, Sleigh MA, Tarran GA, Burkill PH, Leakey RJG (1998) Picoplankton community structure on an Atlantic transect from 50 degrees N to 50 degrees S. Deep Sea Res I 45:1339–1355CrossRefGoogle Scholar
  76. Zubkov MV, Sleigh MA, Burkill PH, Leakey RJG (2000) Picoplankton community structure on the Atlantic Meridional Transect a comparison between seasons. Prog Oceanogr 45:369–386CrossRefGoogle Scholar
  77. Zuur AF, Ieno EN, Walker NJ, Saveliev A, Smith G (2009) Mixed effects models and extensions in ecology with R. Springer Science & Business Media, BerlinCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Laia Armengol
    • 1
  • Gara Franchy
    • 1
  • Alicia Ojeda
    • 1
  • Ángelo Santana-del Pino
    • 2
  • Santiago Hernández-León
    • 1
  1. 1.Instituto de Oceanografía y Cambio GlobalUniversidad de Las Palmas de Gran CanariaTeldeSpain
  2. 2.Departamento de MatemáticasUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain

Personalised recommendations