Marine Biology

, 164:107 | Cite as

High pCO2 and elevated temperature reduce survival and alter development in early life stages of the tropical sea hare Stylocheilus striatus

  • Eric J. Armstrong
  • Trevor R. Allen
  • Maeva Beltrand
  • Vaimiti Dubousquet
  • Jonathon H. Stillman
  • Suzanne C. Mills
Original Paper

Abstract

Elevated temperature (ocean warming) and reduced oceanic pH (ocean acidification) are products of increased atmospheric pCO2, and have been shown in many marine taxa to alter morphology, impede development, and reduce fitness. Here, we investigated the effects of high pCO2 and elevated temperature on developmental rate, hatching success, and veliger morphology of embryos of the tropical sea hare, Stylocheilus striatus. Exposure to high pCO2 resulted in significant developmental delays, postponing hatching by nearly 24 h, whereas exposure to elevated temperature (in isolation or in combination with high pCO2) resulted in accelerated development, with larvae reaching several developmental stages approximately 48 h in advance of controls. Hatching success was reduced by ~20 and 55% under high pCO2 and warming, respectively, while simultaneous exposure to both conditions resulted in a nearly additive 70% reduction in hatching. In addition to these ontological and lethal effects, exposure of embryos to climate change stressors resulted in significant morphological effects. Larval shells were nearly 40% smaller under high pCO2 and warming in isolation and up to 53% smaller under multi-stressor conditions. In general, elevated temperature had the largest impact on development, with temperature-effects nearly 3.5-times the magnitude of high pCO2-effects. These results indicate that oceanic conditions congruent with climate change predictions for the end of the twenty-first century suppress successful development in S. striatus embryos, potentially reducing their viability as pelagic larvae.

Supplementary material

227_2017_3133_MOESM1_ESM.pdf (277 kb)
Supplementary material 1 (PDF 276 kb)

References

  1. Anderson JT (1988) A review of size dependent survival during pre-recruit stages of fishes in relation to recuritment. J Northwest Atl Fish Sci 8:55–66Google Scholar
  2. Anger K (1987) The D0 threshold: a critical point in the larval development of decapod crustaceans. J Exp Mar Bio Ecol 108:15–30. doi:10.1016/0022-0981(87)90128-6 CrossRefGoogle Scholar
  3. Breitburg DL, Salisbury J, Bernhard JM et al (2015) And on top of all that… Coping with ocean acidification in the midst of many stressors. Oceanography 28:48–61. doi:10.1017/CBO9781107415324.004 CrossRefGoogle Scholar
  4. Brierley AS, Kingsford MJ (2009) Impacts of climate change on marine organisms and ecosystems. Curr Biol 19:R602–R614. doi:10.1016/j.cub.2009.05.046 CrossRefGoogle Scholar
  5. Busby MA, Stewart C, Miller CA et al (2013) Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression. Bioinformatics 29:656–657. doi:10.1093/bioinformatics/btt015 CrossRefGoogle Scholar
  6. Byrne M, Przeslawski R (2013) Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr Comp Biol 53:582–596. doi:10.1093/icb/ict049 CrossRefGoogle Scholar
  7. Carey N, Dupont SAM, Sigwart JD (2016) Sea hare Aplysia punctata (Mollusca : Gastropoda) can maintain shell calcification under extreme ocean acidification. Biol Bull 213(2):142–151CrossRefGoogle Scholar
  8. Cohen J (1992) A power primer. Psychol Bull 112:155–159. doi:10.1037/0033-2909.112.1.155 CrossRefGoogle Scholar
  9. Davis AR, Coleman D, Broad A et al (2013) Complex responses of intertidal molluscan embryos to a warming and acidifying ocean in the presence of UV radiation. PLoS ONE 8(2). doi:10.1371/journal.pone.0055939 CrossRefGoogle Scholar
  10. Deutsch CA, Tewksbury JJ, Huey RB et al (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105:6668–6672. doi:10.1073/pnas.0709472105 CrossRefGoogle Scholar
  11. Dickson A (2010) Standards for ocean measurements. Oceanography 23:34–47. doi:10.5670/oceanog.2010.22.COPYRIGHT CrossRefGoogle Scholar
  12. Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. PICES Special Publication 3, British ColumbiaGoogle Scholar
  13. Dorey N, Lançon P, Thorndyke M, Dupont S (2013) Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH. Glob Chang Biol 19:3355–3367. doi:10.1111/gcb.12276 Google Scholar
  14. Dupont S, Thorndyke MC (2009) Impact of CO2-driven ocean acidification on invertebrates early life-history—what we know, what we need to know and what we can do. Biogeosci Discuss 6:3109–3131. doi:10.5194/bgd-6-3109-2009 CrossRefGoogle Scholar
  15. Dupont S, Havenhand J, Thorndyke W et al (2008) Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar Ecol Prog Ser 373:285–294. doi:10.3354/meps07800 CrossRefGoogle Scholar
  16. Ellis RP, Bersey J, Rundle SD et al (2009) Subtle but significant effects of CO2 acidified seawater on embryos of the intertidal snail, Littorina obtusata. Aquat Biol 5:41–48. doi:10.3354/ab00118 CrossRefGoogle Scholar
  17. Fabry V, Seibel B, Feely R, Orr J (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432. doi:10.1093/icesjms/fsn048 CrossRefGoogle Scholar
  18. Ganachaud AS, Sen Gupta A, Orr JC et al (2011) Observed and expected changes to the tropical Pacific Ocean. In: Bell JD, Johnson JE, Hobday AJ (eds) Vulnerability of tropical Pacific fisheries and aquaculture to climate change. Secretariat of the Pacific Community, Noumea, pp 101–188Google Scholar
  19. Garrido S, Ben-Hamadou R, Santos AMP et al (2015) Born small, die young: intrinsic, size-selective mortality in marine larval fish. Sci Rep 5:17065. doi:10.1038/srep17065 CrossRefGoogle Scholar
  20. Gattuso J-P, Epitalon J-M, Lavigne H (2015) Seacarb: seawater carbonate chemistry with R. R package version 3.1.1, The Comprehensive R Archive Network. http://CRAN.R-project.org/package=seacarb. Accessed 06 Apr 2017
  21. Gazeau F, Parker LM, Comeau S et al (2013) Impacts of ocean acidification on marine shelled molluscs. Mar Biol 160:2207–2245. doi:10.1007/s00227-013-2219-3 CrossRefGoogle Scholar
  22. Harley CDG, Hughes AR, Hultgren KM et al (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241. doi:10.1111/j.1461-0248.2005.00871.x CrossRefGoogle Scholar
  23. Harvey BP, Gwynn-Jones D, Moore PJ (2013) Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol Evol 3:1016–1030. doi:10.1002/ece3.516 CrossRefGoogle Scholar
  24. Hendriks IE, Duarte C, Álvarez M (2010) Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuar Coast Shelf Sci 86:157–164. doi:10.1016/j.ecss.2009.11.022 CrossRefGoogle Scholar
  25. Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, New York, p 466Google Scholar
  26. Hofmann GE, Smith JE, Johnson KS et al (2011) High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6:e28983. doi:10.1371/journal.pone.0028983 CrossRefGoogle Scholar
  27. Horwitz R, Jackson M, Mills SC (2017) The embryonic life history of the tropical sea hare Stylocheilus striatus (Gastropoda: Opisthobranchia) under ambient and elevated ocean temperatures. PeerJ 5:e2956. doi:10.7717/peerj.2956 CrossRefGoogle Scholar
  28. Houde ED (1989) Comparative growth, mortality, and energetics of marine fish larvae: temperature and implied latitudinal effects. Fish Bull 87:471–495Google Scholar
  29. IPCC 2014 Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, SwitzerlandGoogle Scholar
  30. Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434. doi:10.1111/j.1461-0248.2010.01518.x CrossRefGoogle Scholar
  31. Kroeker KJ, Kordas RL, Crim R et al (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol 19:1884–1896. doi:10.1111/gcb.12179 CrossRefGoogle Scholar
  32. Kuffner IB, Paul VJ (2004) Effects of the benthic cyanobacterium Lyngbya majuscula on larval recruitment of the reef corals Acropora surculosa and Pocillopora damicornis. Coral Reefs 23:455–458. doi:10.1007/s00338-004-0416-8 CrossRefGoogle Scholar
  33. Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284. doi:10.3354/meps07802 CrossRefGoogle Scholar
  34. Leichter J (2015) MCR LTER: Coral reef: benthic water temperature, ongoing since 2005. In: nb-lter-mcr.1035.10. https://portal.lternet.edu/nis/mapbrowse?packageid=knb-lter-mcr.1035.10
  35. Lucey NM, Lombardi C, DeMarchi L et al (2015) To brood or not to brood: are marine invertebrates that protect their offspring more resilient to ocean acidification? Sci Rep 5:12009. doi:10.1038/srep12009 CrossRefGoogle Scholar
  36. Manly BFJ (2007) Randomization, bootstrap, and Monte Carlo methods in biology, 3rd edn. Chapman & Hall, LondonGoogle Scholar
  37. Manríquez PH, Jara ME, Torres R et al (2014) Effects of ocean acidification on larval development and early post-hatching traits in Concholepas concholepas (loco). Mar Ecol Prog Ser 514:87–103. doi:10.3354/meps10951 CrossRefGoogle Scholar
  38. Montory JA, Chaparro OR, Cubillos VM, Pechenik JA (2009) Isolation of incubation chambers during brooding: effect of reduced pH on protoconch development in the estuarine gastropod Crepipatella dilatata (Calyptraeidae). Mar Ecol Prog Ser 374:157–166. doi:10.3354/meps07780 CrossRefGoogle Scholar
  39. Nedelec SL, Radford AN, Simpson SD et al (2014) Anthropogenic noise playback impairs embryonic development and increases mortality in a marine invertebrate. Sci Rep 4:5891. doi:10.1038/srep05891 CrossRefGoogle Scholar
  40. Nguyen HD, Doo SS, Soars NA, Byrne M (2012) Noncalcifying larvae in a changing ocean: warming, not acidification/hypercapnia, is the dominant stressor on development of the sea star Meridiastra calcar. Glob Chang Biol 18:2466–2476. doi:10.1111/j.1365-2486.2012.02714.x CrossRefGoogle Scholar
  41. Noisette F, Comtet T, Legrand E et al (2014) Does encapsulation protect embryos from the effects of ocean acidification? the example of Crepidula fornicata. PLoS ONE 9:1–11. doi:10.1371/journal.pone.0093021 CrossRefGoogle Scholar
  42. Paganini AW, Miller NA, Stillman JH (2014) Temperature and acidification variability reduce physiological performance in the intertidal zone porcelain crab Petrolisthes cinctipes. J Exp Biol 217:3974–3980. doi:10.1242/jeb.109801 CrossRefGoogle Scholar
  43. Pörtner HO, Bennett AF, Bozinovic F et al (2006) Trade-offs in thermal adaptation: the need for a molecular to ecological integration. Physiol Biochem Zool 79(2):295–313. doi:10.1086/499986 CrossRefGoogle Scholar
  44. Pörtner H, Gutowska M, Ishimatsu A et al (2011) Effects of ocean acidification on nektonic organisms. In: Gattuso J, Hansson J (eds) Ocean acidification. Oxford University Press, Oxford, pp 154–175Google Scholar
  45. Schneider C, Rasband W, Eliceiri K (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  46. Stillman JH (2003) Acclimation capacity underlies susceptibility to climate change. Science 301(80):65. doi:10.1126/science.1083073 CrossRefGoogle Scholar
  47. Stillman JH, Armstrong E (2015) Genomics are transforming our understanding of responses to climate change. Bioscience 65:237–246. doi:10.1093/biosci/biu219 CrossRefGoogle Scholar
  48. Stumpp M, Wren J, Melzner F et al (2011) CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay. Comp Biochem Physiol A: Mol Integr Physiol 160:331–340. doi:10.1016/j.cbpa.2011.06.022 CrossRefGoogle Scholar
  49. Talmage SC, Gobler CJ (2011) Effects of elevated temperature and carbon dioxide on the growth and survival of larvae and juveniles of three species of northwest Atlantic bivalves. PLoS ONE 6(10). doi:10.1371/journal.pone.0026941
  50. Team RDC (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  51. Tewksbury JJ, Huey RB, Deutsch CA (2008) Putting the heat on tropical animals. Science 320(80):1296–1297. doi:10.1126/science.1159328 CrossRefGoogle Scholar
  52. Thacker RW, Ginsburg DW, Paul VJ (2001) Effects of herbivore exclusion and nutrient enrichment on coral reef macroalgae and cyanobacteria. Coral Reefs 19:318–329. doi:10.1007/s003380000122 CrossRefGoogle Scholar
  53. Timmins-Schiffman E, O’Donnell MJ, Friedman CS, Roberts SB (2013) Elevated pCO2 causes developmental delay in early larval Pacific oysters, Crassostrea gigas. Mar Biol 160:1973–1982. doi:10.1007/s00227-012-2055-x CrossRefGoogle Scholar
  54. Todgham AE, Stillman JH (2013) Physiological responses to shifts in multiple environmental stressors: relevance in a changing world. Integr Comp Biol 53:539–544. doi:10.1093/icb/ict086 CrossRefGoogle Scholar
  55. van Heerwaarden B, Kellermann V, Sgrò CM (2016) Limited scope for plasticity to increase upper thermal limits. Funct Ecol 30(12):1947–1956. doi:10.1111/1365-2435.12687 CrossRefGoogle Scholar
  56. Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci USA 105:15452–15457. doi:10.1073/pnas.0803833105 CrossRefGoogle Scholar
  57. Wangensteen OS, Dupont S, Casties I et al (2013) Some like it hot: temperature and pH modulate larval development and settlement of the sea urchin Arbacia lixula. J Exp Mar Biol Ecol 449:304–311. doi:10.1016/j.jembe.2013.10.007 CrossRefGoogle Scholar
  58. Zhang H, Shin PKS, Cheung SG (2015) Physiological responses and scope for growth upon medium-term exposure to the combined effects of ocean acidification and temperature in a subtidal scavenger Nassarius conoidalis. Mar Environ Res 106:51–60. doi:10.1016/j.marenvres.2015.03.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Eric J. Armstrong
    • 1
    • 2
  • Trevor R. Allen
    • 1
  • Maeva Beltrand
    • 3
    • 4
  • Vaimiti Dubousquet
    • 3
    • 4
    • 5
  • Jonathon H. Stillman
    • 1
    • 2
  • Suzanne C. Mills
    • 3
    • 4
  1. 1.Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyUSA
  2. 2.Romberg Tiburon Center for Environmental StudiesSan Francisco State UniversityTiburonUSA
  3. 3.EPHE PSL Research UniversityUSR 3278 CRIOBE CNRS-UPVDMo’oreaFrench Polynesia
  4. 4.Laboratoire d’Excellence “CORAIL”Mo’oreaFrench Polynesia
  5. 5.Département de recherche agronomique appliquéeService du développement ruralPapeeteFrench Polynesia

Personalised recommendations