Advertisement

Marine Biology

, 164:75 | Cite as

Latitudinal and ontogenetic variation in the diet of a pelagic mesopredator (Pomatomus saltatrix), assessed with a classification tree analysis

  • Hayden T. SchillingEmail author
  • Julian M. Hughes
  • James A. Smith
  • Jason D. Everett
  • John Stewart
  • Iain M. Suthers
Original paper

Abstract

Pelagic mesopredators are abundant in many marine ecosystems and exert strong top-down influence on food webs. We explored the dietary niche of Pomatomus saltatrix in eastern Australia, using a classification tree analysis to identify key factors driving diet variation. P. saltatrix was shown to be an opportunistic generalist predator which exhibited increased baitfish consumption, and decreased crustacean consumption, with increasing size. The classification tree analysis showed that body size and latitude had the greatest influence on the diet of P. saltatrix, with significant ontogenetic diet shifts occurring at 8 and 30 cm fork length (FL). While piscivory is evident in the majority of P. saltatrix diets by ~8 cm FL, crustaceans are almost entirely absent from the diet after ~30 cm FL. The importance of latitude was likely related to the broad-scale oceanography in the study region, including the East Australian Current and its separation from the continental shelf. The classification tree analysis is a powerful framework for identifying important variables in diet composition.

Keywords

gut content analysis piscivory East Australian Current baitfish tailor 

Notes

Acknowledgements

Thanks to Petra Kuhnert (CSIRO) for providing the R ‘diet’ package. The work was funded by the Australian Research Council and the NSW Recreational Fishing Trust. Special thanks to Australian Surfcaster and Ben van der Woude for donating large numbers of fish. This is manuscript number 204 from the Sydney Institute of Marine Science.

Compliance with ethical standards

Conflict of interest

All authors declared they have no conflict of interest.

Funding

This work was funded by an Australian Research Council Linkage Project (LP150100923) and the NSW Recreational Fishing Trust. HTS was supported by an Australian Government Research Training Program Scholarship.

Ethical approval

This research was approved by the NSW Department of Primary Industries Fisheries Ethics Committee (ACEC# 14/14) and fish were collected under a NSW DPI Scientific Collection Permit (P03/0086(F)-8.1).

Supplementary material

227_2017_3105_MOESM1_ESM.pdf (68 kb)
Supplementary material 1 (PDF 67 KB)

References

  1. Alegre A, Bertrand A, Espino M, Espinoza P, Dioses T, Ñiquen M, Navarro I, Simier M, Ménard F (2015) Diet diversity of jack and chub mackerels and ecosystem changes in the northern Humboldt Current system: a long-term study. Prog Oceanogr 137:299–313. doi: 10.1016/j.pocean.2015.07.010 CrossRefGoogle Scholar
  2. Andaloro F, Pipitone C (1997) Food and feeding habits of the amberjack, Seriola dumerili in the Central Mediterranean Sea during the spawning season. Cah Biol Mar 38:91–96Google Scholar
  3. Bade TM (1977) The biology of tailor (Pomatomus saltatrix Linn.) from the east coast of Australia. Masters Thesis, University of Queensland, BrisbaneGoogle Scholar
  4. Baird ME, Timko PG, Middleton JH, Mullaney TJ, Cox DR, Suthers IM (2008) Biological properties across the Tasman Front off southeast Australia. Deep Sea Res (I Oceanogr Res Pap) 55: 1438–1455 doi: 10.1016/j.dsr.2008.06.011 CrossRefGoogle Scholar
  5. Baker R, Buckland A, Sheaves M (2014) Fish gut content analysis: robust measures of diet composition. Fish Fish 15:170–177. doi: 10.1111/faf.12026 CrossRefGoogle Scholar
  6. Baum JK, Worm B (2009) Cascading top-down effects of changing oceanic predator abundances. J Anim Ecol 78:699–714. doi: 10.1111/j.1365-2656.2009.01531.x CrossRefGoogle Scholar
  7. Bemis WE, Giuliano A, McGuire B (2005) Structure, attachment, replacement and growth of teeth in bluefish, Pomatomus saltatrix (Linnaeus, 1766), a teleost with deeply socketed teeth. Zoology 108:317–327. doi: 10.1016/j.zool.2005.09.004 CrossRefGoogle Scholar
  8. Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC Press, Monterey, CAGoogle Scholar
  9. Buckel JA, Fogarty MJ, Conover DO (1999) Foraging habits of bluefish, Pomatomus saltatrix, on the U.S. east coast continental shelf. Fish Bull 97:758–775Google Scholar
  10. Campo D, Mostarda E, Castriota L, Scarabello MP, Andaloro F (2006) Feeding habits of the Atlantic bonito, Sarda sarda (Bloch, 1793) in the southern Tyrrhenian sea. Fish Res 81:169–175. doi: 10.1016/j.fishres.2006.07.006 CrossRefGoogle Scholar
  11. Cetina-Heredia P, Roughan M, van Sebille E, Coleman MA (2014) Long-term trends in the East Australian Current separation latitude and eddy driven transport. J Geophys Res (C. Oceans) 119:4351–4366. doi: 10.1002/2014JC010071 CrossRefGoogle Scholar
  12. Dempster T (2004) Biology of fish associated with moored fish aggregation devices (FADs): implications for the development of a FAD fishery in New South Wales, Australia. Fish Res 68:189–201. doi: 10.1016/j.fishres.2003.12.008 CrossRefGoogle Scholar
  13. Duffy LM, Olson RJ, Lennert-Cody CE, Galván-Magaña F, Bocanegra-Castillo N, Kuhnert PM (2015) Foraging ecology of silky sharks, Carcharhinus falciformis, captured by the tuna purse-seine fishery in the eastern Pacific Ocean. Mar Biol 162:571–593. doi: 10.1007/s00227-014-2606-4 CrossRefGoogle Scholar
  14. Dunn K (2014) The diet, reproductive biology, age and growth of yellowtail, Seriola lalandi. Masters Thesis, Department of Biological Sciences, University of Cape TownGoogle Scholar
  15. Eriksson BK, Sieben K, Eklöf J, Ljunggren L, Olsson J, Casini M, Bergström U (2011) Effects of altered offshore food webs on coastal ecosystems emphasize the need for cross-ecosystem management. Ambio 40:786. doi: 10.1007/s13280-011-0158-0 CrossRefGoogle Scholar
  16. Everett JD, Baird ME, Oke PR, Suthers IM (2012) An avenue of eddies: quantifying the biophysical properties of mesoscale eddies in the Tasman Sea. Geophys Res Lett. doi: 10.1029/2012GL053091
  17. Everett JD, Baird ME, Roughan M, Suthers IM, Doblin MA (2014) Relative impact of seasonal and oceanographic drivers on surface chlorophyll a along a Western Boundary Current. Prog Oceanogr 120:340–351. doi: 10.1016/j.pocean.2013.10.016 CrossRefGoogle Scholar
  18. FAO (2016) Global capture production. Fisheries and Aquaculture Information and Statistics Service. http://www.fao.org/figis/servlet/SQServlet?file=/work/FIGIS/prod/webapps/figis/temp/hqp_2071296630237867096.xml&outtype=html
  19. Feng X, He X, Hu J (2011) Wild bootstrap for quantile regression. Biometrika 98:995–999. doi: 10.1093/biomet/asr052 CrossRefGoogle Scholar
  20. Frid A, Marliave J, Heithaus MR (2012) Interspecific variation in life history relates to antipredator decisions by marine mesopredators on temperate reefs. PLoS One 7:e40083. doi: 10.1371/journal.pone.0040083 CrossRefGoogle Scholar
  21. Godfrey J, Cresswell G, Golding T, Pearce A, Boyd R (1980) The separation of the East Australian Current. J Phys Oceanogr 10:430–440CrossRefGoogle Scholar
  22. Griffiths SP, Kuhnert PM, Fry GF, Manson FJ (2009) Temporal and size-related variation in the diet, consumption rate, and daily ration of mackerel tuna (Euthynnus affinis) in neritic waters of eastern Australia. ICES J Mar Sci 66:720–733. doi: 10.1093/icesjms/fsp065 CrossRefGoogle Scholar
  23. Hartmart KJ, Brandt SB (1995) Predatory demand and impact of striped bass, bluefish, and weakfish in the Chesapeake Bay: applications of bioenergetics models. Can J Fish Aquat Sci 52:1667–1687. doi: 10.1139/f95-760 CrossRefGoogle Scholar
  24. Heithaus MR, Frid A, Wirsing AJ, Worm B (2008) Predicting ecological consequences of marine top predator declines. Trends Ecol Evol 23:202–210. doi: 10.1016/j.tree.2008.01.003 CrossRefGoogle Scholar
  25. Hobday AJ, Hartmann K (2006) Near real-time spatial management based on habitat predictions for a longline bycatch species. Fish Manag Ecol 13:365–380. doi: 10.1111/j.1365-2400.2006.00515.x CrossRefGoogle Scholar
  26. Hughes JM, Stewart J, Lyle JM, McAllister J, Stocks JR, Suthers IM (2013) Latitudinal, ontogenetic, and historical shifts in the diet of a carnivorous teleost, Arripis trutta, in a coastal pelagic ecosystem altered by climate change. Can J Fish Aquat Sci 70:1209–1230. doi: 10.1139/cjfas-2013-0083 CrossRefGoogle Scholar
  27. Hyslop EJ (1980) Stomach contents analysis—a review of methods and their application. J Fish Biol 17:411–429. doi: 10.1111/j.1095-8649.1980.tb02775.x CrossRefGoogle Scholar
  28. Juanes F (2016) A length-based approach to predator prey relationships in marine predators. Can J Fish Aquat Sci. doi: 10.1139/cjfas-2015-0159 Google Scholar
  29. Juanes F, Conover DO (1994) Rapid growth, high feeding rates, and early piscivory in young-of-the-year bluefish (Pomatomus saltatrix). Can J Fish Aquat Sci 51:1752–1761. doi: 10.1139/f94-176 CrossRefGoogle Scholar
  30. Juanes F, Conover DO (1995) Size-structured piscivory: advection and the linkage between predator and prey recruitment in young-of-the-year bluefish. Mar Ecol Prog Ser 128:287–304CrossRefGoogle Scholar
  31. Juanes F, Marks RE, McKown KA, Conover DO (1993) Predation by age-0 bluefish on age-0 anadromous fishes in the Hudson river estuary. Trans Am Fish Soc 122:348–356. doi: 10.1577/1548-8659(1993)122<0348:PBABOA>2.3.CO;2 CrossRefGoogle Scholar
  32. Juanes F, Hare JA, Miskiewicz AG (1996) Comparing early life history strategies of Pomatomus saltatrix: a global approach. Mar Freshw Res 47: 365–379 doi: 10.1071/MF9960365 CrossRefGoogle Scholar
  33. Koenker R (2016) quantreg: Quantile regression. R package version 5.29Google Scholar
  34. Kuhnert PM, Henderson A-K, Bartley R, Herr A (2010) Incorporating uncertainty in gully erosion calculations using the random forests modelling approach. Environmetrics 21: 493–509 doi: 10.1002/env.999 Google Scholar
  35. Kuhnert P, Duffy L, Young J, Olson R (2012) Predicting fish diet composition using a bagged classification tree approach: a case study using yellowfin tuna (Thunnus albacares). Mar Biol 159:87–100. doi: 10.1007/s00227-011-1792-6 CrossRefGoogle Scholar
  36. Lucena FM, Vaske T, Ellis JR, O’Brien CM (2000) Seasonal variation in the diets of bluefish, Pomatomus saltatrix (Pomatomidae) and striped weakfish, Cynoscion guatucupa (Sciaenidae) in southern Brazil: implications of food partitioning. Environ Biol Fishes 57: 423–434. doi: 10.1023/a:1007604424423 CrossRefGoogle Scholar
  37. Morton RM, Halliday I, Cameron D (1993) Movement of tagged juvenile tailor (Pomatomus Saltatrix) in Moreton bay, Queensland. Aust J Mar Freshw Res 44: 811–816CrossRefGoogle Scholar
  38. Olson RJ, Galvan-Magana F (2002) Food habits and consumption rates of common dolphinfish (Coryphaena hippurus) in the eastern Pacific Ocean. Fish Bull 100:279–298Google Scholar
  39. Olson RJ, Popp BN, Graham BS, López-Ibarra GA, Galván-Magaña F, Lennert-Cody CE, Bocanegra-Castillo N, Wallsgrove NJ, Gier E, Alatorre-Ramírez V (2010) Food-web inferences of stable isotope spatial patterns in copepods and yellowfin tuna in the pelagic eastern Pacific Ocean. Prog Oceanogr 86:124–138CrossRefGoogle Scholar
  40. Olson RJ, Duffy LM, Kuhnert PM, Galvan-Magana F, Bocanegra-Castillo N, Alatorre-Ramirez V (2014) Decadal diet shift in yellowfin tuna Thunnus albacares suggests broad-scale food web changes in the eastern tropical Pacific Ocean. Mar Ecol Prog Ser 497:157–178CrossRefGoogle Scholar
  41. Potts WM, Bealey RSJ, Childs AR (2016) Assessing trophic adaptability is critical for understanding the response of predatory fishes to climate change: a case study of Pomatomus saltatrix in a global hotspot. Afr J Mar Sci 38: 539–547. doi: 10.2989/1814232X.2016.1249027 CrossRefGoogle Scholar
  42. Prugh LR, Stoner CJ, Epps CW, Bean WT, Ripple WJ, Laliberte AS, Brashares JS (2009) The rise of the mesopredator. Bioscience 59:779–791. doi: 10.1525/bio.2009.59.9.9 CrossRefGoogle Scholar
  43. Revill AT, Young JW, Lansdell M (2009) Stable isotopic evidence for trophic groupings and bio-regionalization of predators and their prey in oceanic waters off eastern Australia. Mar Biol 156:1241–1253. doi: 10.1007/s00227-009-1166-5 CrossRefGoogle Scholar
  44. Ritchie EG, Johnson CN (2009) Predator interactions, mesopredator release and biodiversity conservation. Ecol Lett 12:982–998. doi: 10.1111/j.1461-0248.2009.01347.x CrossRefGoogle Scholar
  45. Roughan M, Middleton JH (2002) A comparison of observed upwelling mechanisms off the east coast of Australia. Cont Shelf Res 22:2551–2572. doi: 10.1016/S0278-4343(02)00101-2 CrossRefGoogle Scholar
  46. Roughan M, Macdonald HS, Baird ME, Glasby TM (2011) Modelling coastal connectivity in a Western Boundary Current: seasonal and inter-annual variability. Deep Sea Res Part II Top Stud Oceanogr 58:628–644. doi: 10.1016/j.dsr2.2010.06.004 CrossRefGoogle Scholar
  47. Scales KL, Miller PI, Hawkes LA, Ingram SN, Sims DW, Votier SC (2014) On the front line: frontal zones as priority at-sea conservation areas for mobile marine vertebrates. J Appl Ecol 51:1575–1583. doi: 10.1111/1365-2664.12330 CrossRefGoogle Scholar
  48. Scharf FS, Buckel JA, Juanes F, Conover DO (1998) Predation by juvenile piscivorous bluefish (Pomatomus saltatrix): the influence of prey to predator size ratio and prey type on predator capture success and prey profitability. Can J Fish Aquat Sci 55:1695–1703. doi: 10.1139/f98-056 CrossRefGoogle Scholar
  49. Scharf FS, Juanes F, Rountree RA (2000) Predator size-prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Mar Ecol Prog Ser 208:229–248CrossRefGoogle Scholar
  50. Seymour JR, Doblin MA, Jeffries TC, Brown MV, Newton K, Ralph PJ, Baird M, Mitchell JG (2012) Contrasting microbial assemblages in adjacent water masses associated with the East Australian Current. Environ Microbiol Rep 4: 548–555. doi: 10.1111/j.1758-2229.2012.00362.x CrossRefGoogle Scholar
  51. Shimose T, Watanabe H, Tanabe T, Kubodera T (2013) Ontogenetic diet shift of age-0 year Pacific bluefin tuna Thunnus orientalis. J Fish Biol 82:263–276. doi: 10.1111/j.1095-8649.2012.03483.x CrossRefGoogle Scholar
  52. Suthers IM, Young JW, Baird ME, Roughan M, Everett JD, Brassington GB, Byrne M, Condie SA, Hartog JR, Hassler CS, Hobday AJ, Holbrook NJ, Malcolm HA, Oke PR, Thompson PA, Ridgway K (2011) The strengthening East Australian Current, its eddies and biological effects—an introduction and overview. Deep Sea Res Part II Top Stud Oceanogr 58: 538–546. doi: 10.1016/j.dsr2.2010.09.029 CrossRefGoogle Scholar
  53. Szczebak JT, Taylor DL (2011) Ontogenetic patterns in bluefish (Pomatomus saltatrix) feeding ecology and the effect on mercury biomagnification. Environ Toxicol Chem 30:1447–1458. doi: 10.1002/etc.516 CrossRefGoogle Scholar
  54. Taylor MD (2008) Spatial and temporal patterns of habitat use by three estuarine species of mysid shrimp. Mar Freshw Res 59: 792–798. doi: 10.1071/MF07247 CrossRefGoogle Scholar
  55. Taylor MD, Fielder DS, Suthers IM (2006) Spatial and ontogenetic variation in the diet of wild and stocked mulloway (Argyrosomus japonicus, sciaenidae) in Australian estuaries. Est Coast 29: 785–793. doi: 10.1007/bf02786529 CrossRefGoogle Scholar
  56. Therneau T, Atkinson B, Ripley B (2015) rpart: Recursive partitioning and regression trees. R package version 4.1–10Google Scholar
  57. Wu L, Cai W, Zhang L, Nakamura H, Timmermann A, Joyce T, McPhaden MJ, Alexander M, Qiu B, Visbeck M, Chang P, Giese B (2012) Enhanced warming over the global subtropical western boundary currents. Nat Clim Chang 2: 161–166. http://www.nature.com/nclimate/journal/v2/n3/abs/nclimate1353.html#supplementary-information
  58. Young JW, Bradford R, Lamb TD, Clementson LA, Kloser R, Galea H (2001) Yellowfin tuna (Thunnus albacares) aggregations along the shelf break off south-eastern Australia: links between inshore and offshore processes. Mar Freshw Res 52: 463–474. doi: 10.1071/MF99168 CrossRefGoogle Scholar
  59. Zeller BM, Pollock BR, Williams LE (1996) Aspects of the life history and management of tailor (Pomatomus saltatrix) in Queensland. Mar Freshw Res 47: 323–329CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Hayden T. Schilling
    • 1
    • 2
    Email author
  • Julian M. Hughes
    • 3
  • James A. Smith
    • 1
    • 2
  • Jason D. Everett
    • 1
    • 2
  • John Stewart
    • 3
  • Iain M. Suthers
    • 1
    • 2
  1. 1.Evolution and Ecology Research CentreUniversity of New South WalesSydneyAustralia
  2. 2.Sydney Institute of Marine ScienceMosmanAustralia
  3. 3.New South Wales Department of Primary IndustriesSydney Institute of Marine ScienceMosmanAustralia

Personalised recommendations