Marine Biology

, 164:40 | Cite as

Comparison of meiofaunal diversity by combined morphological and molecular approaches in a shallow Mediterranean sediment

  • Jadwiga Rzeznik-OrignacEmail author
  • Dimitri Kalenitchenko
  • Jérôme Mariette
  • Jean-Yves Bodiou
  • Nadine Le Bris
  • Evelyne Derelle


Fast, accurate and thorough assessments of meiofaunal communities are crucial requirements for ecological studies and routine monitoring of ecosystem status. This study scrutinizes the reliability of the molecular approach through a comparison of morphological and molecular inventories of meiofaunal diversity, with a special focus on nematodes. Sediment samples were collected from a reference coastal Mediterranean site. Metabarcoding analysis was performed using a nuclear marker (small subunit 18S ribosomal RNA) and compared to a morphological analysis performed on the same sample-cores. The results from morphological and molecular inventories differed but were complementary. The molecular analysis revealed a remarkable level of diversity (16 phyla) that exceeded the traditional morphological analysis (10 phyla), showing that meiofaunal diversity can greatly exceed current perceptions. The molecular method proved powerful in detecting the presence of soft-bodied predators, such as Platyhelminthes, possibly reflecting preservation bias in morphological approaches. Even if the molecular inventory identified 57.5% of the sampled diversity, surprisingly, it has not revealed the presence of some nematode genera identified through morphological assessment. While the technique is promising, some further developments are required. As the dominant genus Sabatieria was undetected by the molecular approach, despite being present in the Silva database, improving the knowledge of specific primers should be a priority. Additionally, with 77% of nematode OTUs remaining unassigned at genera level, remedy this lower efficiency requires further investigations to provide DNA-sequences of all morphologically identified species.


Meiofauna Morphological Method Morphological Approach Meiofaunal Community Molecular Dataset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research received support from CNRS as the APEGE programme (incentive funds from the Institute of Ecology and Environment - InEE). Additional support was obtained from the chair of biodiversity, extreme marine environments and global change supported by Foundation TOTAL. We acknowledge Hervé Moreau for his support and stimulating discussions, Nigel Grimsley and Wiley Edition Services for English correction. We thank Jean-Claude Roca and Bruno Hesse, the scuba divers, and the R/V crew Nereis II of the Observatoire Océanologique in Banyuls-sur-Mer. We thank anonymous reviewers for improvement of the manuscript.

Compliance with ethical standards


This study was partly funded by the chair of biodiversity supported by Foundation TOTAL (J091I006).

Conflict of interest

All authors declared they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

227_2017_3074_MOESM1_ESM.pdf (59 kb)
SI_1 protocol: QIIME scripts used for bioinformatics data processing analyses (PDF 59 KB)
227_2017_3074_MOESM2_ESM.pdf (74 kb)
SI_2 dataset: Datasets obtained from molecular and morphological approaches: presence/absence of genera, list of nematode genera/species and their relative abundance identified by the morphological approach (PDF 73 KB)
227_2017_3074_MOESM3_ESM.pdf (69 kb)
SI_3 table 1: Comparison of morphological and DNA-based approach datasets (96% cut off) for the metazoans; the total number of OTUs or individuals, phyla / orders or classes and genera (PDF 69 KB)


  1. Bik HM, Way S, de Lay P et al (2012) Metagenetic community analysis of microbial eukaryotes illuminates biogeographic patterns in deep-sea and shallow water sediments. Mol Ecol 21:1048–1059CrossRefGoogle Scholar
  2. Bonaglia S, Nascimento FJA, Bartoli M, Klawonn I, Brüchert V (2014) Meiofauna increases bacterial denitrification in marine sediments. Nat Commun 5:1–9CrossRefGoogle Scholar
  3. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefGoogle Scholar
  4. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. PRIMER-E, PlymouthGoogle Scholar
  5. Coissac E, Riaz T, Puillandre N (2012) Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol Ecol 21:1834–1847CrossRefGoogle Scholar
  6. Cowart DA, Pinheiro M, Mouchel O et al (2015) Metabarcoding is powerful yet still blind: a comparative analysis of morphological and molecular surveys of seagrass communities. PLoS One 10(2):e0117562. doi: 10.1371/journal.pone.0117562 CrossRefGoogle Scholar
  7. Creer S, Fonseca VG, Porazinska DL et al (2010) Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. Mol Ecol 19:4–20CrossRefGoogle Scholar
  8. Curini-Galletti M, Artois T, Delogu V et al (2012) Patterns of diversity in soft-bodied meiofauna: dispersal ability and body size matter. PLoS One 7(3):e33801. doi: 10.1371/journal.pone.0033801 CrossRefGoogle Scholar
  9. Dafforn KA, Baird DJ, Chariton AA et al (2014) Faster, higher and stronger? The pros and cons of molecular faunal data for assessing ecosystem condition. Adv Ecol Res 51:1–40CrossRefGoogle Scholar
  10. Danovaro R, Tselepides A, Otegui A, Della Crose N (2000) Dynamics of meiofaunal assemblages on the continental shelf and deep-sea sediments of the Cretan Sea (NE Mediterranean): relationships with seasonal changes in food supply. Prog Oceanogr 46:367–400CrossRefGoogle Scholar
  11. Dell’Anno A, Carugati L, Corinaldesi C, Riccioni G, Danovaro R (2015) Unveiling the biodiversity of deep-sea nematodes through metabarcoding: are we ready to bypass the classical taxonomy? PLoS One 10(12): e0144928. doi: 10.1371/journal.pone.0144928 CrossRefGoogle Scholar
  12. DeLong EF, Preston CM, Mincer T et al (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503CrossRefGoogle Scholar
  13. Dong D, Yan A, Liu H, Zhang X, Xu Y (2006) Removal of humic substances from soil DNA using aluminium sulphate. J Microbiol Methods 66:217–222CrossRefGoogle Scholar
  14. Edgar RC, Haas JB, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CrossRefGoogle Scholar
  15. Fauvel P (1923) Polychaetes errantes. Fauna de France, Fédération Française des Sociétés de Sciences NaturellesGoogle Scholar
  16. Fonseca VG, Carvalho GR, Sung W et al (2010) Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nat Commun 1:1–8CrossRefGoogle Scholar
  17. Fonseca VG, Carvalho GR, Nichols B et al. (2014) Metagenetic analysis of patterns of distribution and diversity of marine meiobenthic eukaryotes. Glob Ecol and Biogeogr 23:1293–1302CrossRefGoogle Scholar
  18. Giere O (2009) Meiobenthology: the microscopic motile fauna of aquatic sediments. Springer, BerlinGoogle Scholar
  19. Grémarre A, Madernach L, De Bovée F et al (2002) Relationships between sedimentary organics and benthic meiofauna on the continental shelf and the upper slope of the Gulf of Lions (NW Mediterranean). Mar Ecol Prog Ser 234:85–94CrossRefGoogle Scholar
  20. Guille A (1970) Bionomie benthique du plateau continental de la côte catalane française. II- Les communautés de la macrofaune. Vie & Milieu 21:149–280Google Scholar
  21. Guille A (1971) Bionomie benthique du plateau continental de la côte catalane française IV-Densités, biomasses et variations saisonnières de la macrofaune. Vie & Milieu 22:93–158Google Scholar
  22. Guille A, Soyer J (1968) La faune benthique des substrats meubles de Banyuls-sur-Mer. Premières données qualitatives et quantitatives. Vie & Milieu 19:323–360Google Scholar
  23. Guille A, Soyer J (1974) Bionomie benthique du plateau continental de la côte catalane française. Macrofaune et méiofaune, rapports quantitatifs et biocénotiques. Vie & Milieu 24:301–320Google Scholar
  24. Hadziavdic K, Lekang K, Lanzen A et al (2014) Characterization of the 18S rRNA Gene for designing universal eukaryote specific primers. PLoS One 9(2):e87624. doi: 10.1371/journal.pone.0087624 CrossRefGoogle Scholar
  25. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9Google Scholar
  26. Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol 23:399–489Google Scholar
  27. Higgins RP, Thiel H (1988) Introduction to the study of meiofauna. Smithsonian Institution Press, WashingtonGoogle Scholar
  28. Huys R, Gee JM, Moore CG, Hamond R (1996) Marine and brackish water Harpacticoid Copepods part 1. Synopses of the British fauna (new series), no. 51. The Linnean Society of London and The Estuarine and Coastal Sciences Association, Field Studies Council Shrewsbury, UKGoogle Scholar
  29. Ingels J, Vanreusel A (2013) The importance of different spatial scales in determining structural and functional characteristics of deep-sea infauna communities. Biogeosciences 10:4547–4563CrossRefGoogle Scholar
  30. Ingels J, Van den Driessche P, De Mesel I et al (2010) Preferred use of bacteria over phytoplankton by deep-sea nematodes in polar regions. Mar Ecol Prog Ser 406:121–133CrossRefGoogle Scholar
  31. Labrune C, Grémare A, Guizien K, Amouroux JM (2007) Long-term comparison of soft bottom macrobenthos in the Bay of Banyuls-sur-Mer (north-western Mediterranean Sea): a reappraisal. J Sea Res 58:125–143CrossRefGoogle Scholar
  32. Lallias D, Hiddink JG, Fonseca VG et al. (2015) Environmental metabarcoding reveals heterogeneous drivers of microbial eukaryote diversity in contrasting estuarine ecosystems. Intl Soc Microbial Ecol 9:1208–1221Google Scholar
  33. Lambshead PJD, Boucher G (2003) Marine nematode deep-sea biodiversity-hyperdiverse or hype? J Biogeogr 30:475–485CrossRefGoogle Scholar
  34. Lang K (1975a) Monographie der Harpacticiden, 1. Otto Koeltz, KoenigsteinGoogle Scholar
  35. Lang K (1975b) Monographie der Harpacticiden, 2. Otto Koeltz, KoenigsteinGoogle Scholar
  36. Lejzerowicz F, Esling P, Pillet L et al. (2015) High-throughput sequencing and morphology perform equally well for benthic monitoring of marine ecosystems. Sci Rep 5:1–10. doi: 10.1038/srep13932 CrossRefGoogle Scholar
  37. Li J, Vincx M, Herman PMJ, Heip C (1997) Monitoring meiobenthos using cm-, m- and km-scales in the Southern Bright of the North Sea. Mar Environl Res 43:265–278CrossRefGoogle Scholar
  38. Nascimento FJA, Näslund J, Elmgren R (2012) Meiofauna enhances organic matter mineralization in soft sediment ecosystems. Limnol Oceanogr 57:338–346CrossRefGoogle Scholar
  39. Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a Web browser. BMC Bioinf 12:1–9CrossRefGoogle Scholar
  40. Pawlowski J, Christen R, Lecroq B et al (2011) Eukaryotic richness in the abyss: insights from pyrotag sequencing. PLoS One 6(4):e18169. doi: 10.1371/journal.pone.0018169 CrossRefGoogle Scholar
  41. Platt HM, Warwick RM (1983) Free living marine nematodes. Part I. British Enoplids. Synopses of the British fauna (new series), no. 28. The Linnean Society of London and The Estuarine and Coastal Sciences Association, Cambridge University Press, CambridgeGoogle Scholar
  42. Platt HM, Warwick RM (1988) Free living marine nematodes. Part II. British Chromadorids. Synopses of the British fauna (new series), no. 38. The Linnean Society of London and The Estuarine and Coastal Sciences Association, E.J. Brill/Dr W. Backhuys, Leiden, New York, Kobenhavn, KölnGoogle Scholar
  43. Platt HM, Warwick RM, Somerfiels PJ (1988) Free living marine nematodes. Part III. Monhysterids. Synopses of the British fauna (new series), no. 53. The Linnean Society of London and The Estuarine and Coastal Sciences Association, Field Studies Council Shrewsbury, UKGoogle Scholar
  44. Porazinska DL, Giblin-Davis RM, Faller L et al (2009) Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Mol Ecol Resour 9:1439–1450CrossRefGoogle Scholar
  45. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequenced amplicons. BMC Bioinform 12:1–18CrossRefGoogle Scholar
  46. Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26:1117–1124CrossRefGoogle Scholar
  47. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Mocrobiol 75:7537–7541CrossRefGoogle Scholar
  48. Snelgrove PVR (1999) Getting to the bottom of marine biodiversity: sedimentary habitats—ocean bottoms are the most widespread habitat on Earth and support high biodiversity and key ecosystem services. Bioscience 49:129–138CrossRefGoogle Scholar
  49. Sogin ML, Morrison HG, Huber JA et al (2006) Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc Natl Acad Sci USA 103:12115–12120CrossRefGoogle Scholar
  50. Soyer J (1970) Bionomie benthique du plateau continental de la côte catalane française. III. Les peuplements de Copepodes harpacticoides (Crustacea). Vie milieu 21:337–511Google Scholar
  51. Soyer J (1971) Bionomie benthique du plateau continental de la cote catalane Frangaise. V. Densites et biomasses du meiobenthos. Vie Milieu 22:351–424Google Scholar
  52. Soyer J (1974) Contribution à l’étude des Copépodes Harpacticoïdes de Méditerranée occidentale. Vie Milieu 24:379–408Google Scholar
  53. Tang CQ, Leasi F, Obertegger U et al (2012) The widely used small subunit 18 S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proc Natl Acad Sci USA 40:16208–16212CrossRefGoogle Scholar
  54. Westheide W (1990) Polychaetes : Interstitial families. Synopses of the British fauna (new series), no. 44. The Linnean Society of London and The Estuarine and Coastal Sciences Association, Universl Book Services/Dr W. Backhuys, OegstgeestGoogle Scholar
  55. Winnepenninckx B, Backeljau T, De Wachter R (1993) Extraction of high-molecular-weight DNA from molluscs. Trends Genet 9:407CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jadwiga Rzeznik-Orignac
    • 1
    Email author
  • Dimitri Kalenitchenko
    • 1
  • Jérôme Mariette
    • 2
  • Jean-Yves Bodiou
    • 3
  • Nadine Le Bris
    • 1
  • Evelyne Derelle
    • 4
  1. 1.Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d’Ecogéochimie des Environnements Benthiques (LECOB UMR 8222), Observatoire OcéanologiqueBanyuls/merFrance
  2. 2.MIAT, Université de Toulouse, INRA31326 Castanet-TolosanFrance
  3. 3.Sorbonne Universités, UPMC Univ Paris 06, CNRS, Observatoire OcéanologiqueBanyuls/merFrance
  4. 4.Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie Intégrative des Organismes Marins (BIOM UMR 7232), Observatoire OcéanologiqueBanyuls/merFrance

Personalised recommendations