Marine Biology

, 164:2 | Cite as

Movement patterns of reef predators in a small isolated marine protected area with implications for resource management

  • Alexander FilousEmail author
  • Alan Friedlander
  • Barrett Wolfe
  • Kostantinos Stamoulis
  • Stephen Scherrer
  • Adam Wong
  • Kristy Stone
  • Russell Sparks
Original paper


Reef predators play a critical role in maintaining the balance of marine ecosystems and are an important component of Hawaii’s recreational and commercial fisheries. In response to the increasing anthropogenic demands on these populations across the main Hawaiian Islands, the study of predator movements in marine protected areas has become a research priority. To this aim, we used passive acoustic telemetry to investigate the spatial and temporal movement patterns of five reef predator species: bluefin trevally (Caranx melampygus), giant trevally (Caranx ignobilis), green jobfish (Aprion virescens), whitetip reef sharks (Triaenodon obesus) and gray reef sharks (Carcharhinus amblyrhynchos) at the 31 ha Molokini Marine Life Conservation District (MLCD) off Maui, Hawaii (Lat: 20°37′56.70″N, Lon: 156°29′44.52″W) from November 13, 2013 to August 28, 2015. Our results indicate that the predator assemblage in the MLCD was dominated by teleost fishes during the day and sharks at night. Residency was variable across species, with bluefin trevally exhibiting the highest residency in the MLCD, green jobfish the lowest, and long-distance movements between the Molokini MLCD and the other islands of the Maui Nui Complex were common for gray reef sharks and giant trevally. These results indicate that despite its small size, the Molokini MLCD provides a high level of protection to resident species such as bluefin trevally. However, this MLCD is less effective at protecting more mobile predators such as green jobfish, gray reef sharks and giant trevally.


Great Barrier Reef Residency Rate Diel Cycle Reef Shark Main Hawaiian Island 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was funded by the State of Hawaii’s Division of Aquatic Resources. We thank the Maui Division of Aquatic Resources staff for boat use, logistics, and personnel support, the staff at the Kahoʻolawe Island Reserve Commission for their assistance in placing an acoustic receiver on Kahoʻolawe and Dr. Carl Meyer for sharing fish detection data from his acoustic array on Maui. Additionally we would like to thank Les Hata© Hawai‘i Division of Aquatic Resources for the use of the fish illustrations shown in Fig. 3 of this manuscript. The assistance and local knowledge from Linda Castro, Tatiana Martinez and the staff at the Maui Division of Aquatic resources was indispensable for the success of this project and we gratefully acknowledge their contributions.


This study was funded by the State of Hawaii’s Department of Land and Natural Resources, Division of Aquatic Resources award Number 33435.

Compliance with ethical standards

Conflict of interest


Ethical standards

All international, national, and institutional guidelines for the care and use of animals were followed and fish handling methods were reviewed and approved by the University of Hawaii’s Institutional Animal Care and Use Committee, IACUC protocol number 13-1712. Finally all fishing activities inside the MLCD were conducted under the State of Hawaii Special Activity Permit number 2014-23.

Supplementary material

227_2016_3043_MOESM1_ESM.pdf (9.4 mb)
Supplementary material 1 (PDF 9670 kb)


  1. Afonso P, Fontes J, Holland KN, Santos RS (2009) Multi-scale patterns of habitat use in a highly mobile reef fish, the white trevally Pseudocaranx dentex, and their implications for marine reserve design. Mar Ecol Prog Ser 381:273–286. doi: 10.3354/meps07946 CrossRefGoogle Scholar
  2. Barnett A, AbrantesKá KG, Seymour J, Fitzpatrick R (2012) Residency and spatial use by reef sharks of an isolated seamount and its implications for conservation. PLOS ONE 7:1–12. doi: 10.1371/journal.pone.0036574 Google Scholar
  3. Batista MI, Henriques S, Pais MP, Cabral HN (2015) A framework for the assessment of MPA effectiveness based on life history of fishes. Ocean Coast Manag 118:75–87CrossRefGoogle Scholar
  4. Baum JK, Worm B (2009) Cascading top-down effects of changing oceanic predator abundances. J Anim Ecol 78:699–714CrossRefGoogle Scholar
  5. Bie T, Meester L, Brendonck L et al (2012) Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol Lett 15:740–747. doi: 10.1111/j.1461-0248.2012.01794.x CrossRefGoogle Scholar
  6. CAP M (2014) Molokini Shoal Marine Life Conservation DistrictGoogle Scholar
  7. Chapman MR, Kramer DL (2000) Movements of fishes within and among fringing coral reefs in Barbados. Environ Biol Fishes 57:11–24CrossRefGoogle Scholar
  8. Chateau O, Wantiez L (2009) Movement patterns of four coral reef fish species in a fragmented habitat in New Caledonia: implications for the design of marine protected area networks. ICES J Mar Sci 66:50–55. doi: 10.1093/icesjms/fsn165 CrossRefGoogle Scholar
  9. Espinoza M, Heupel MR, Tobin AJ, Simpfendorfer CA (2015a) Residency patterns and movements of grey reef sharks (Carcharhinus amblyrhynchos) in semi isolated coral reef habitats. Mar Biol 162:343–358. doi: 10.1007/s00227-014-2572-x CrossRefGoogle Scholar
  10. Espinoza M, Lédée EJI, Simpfendorfer CA et al (2015b) Contrasting movements and connectivity of reef-associated sharks using acoustic telemetry: implications for management. Ecol Appl 25:2101–2118CrossRefGoogle Scholar
  11. Everson AR, Williams HA, Ito BM (1989) Maturation and reproduction in two Hawaiian eteline snappers, uku, Aprion virescens, and onaga, Etelis coruscans. Fish Bull 87:877–888Google Scholar
  12. Field IC, Meekan MG, Speed CW et al (2010) Quantifying movement patterns for shark conservation at remote coral atolls in the Indian Ocean. Coral Reefs 30:61–71. doi: 10.1007/s00338-010-0699-x CrossRefGoogle Scholar
  13. Fitzpatrick R, Abrantes KG, Seymour J, Barnett A (2011) Variation in depth of whitetip reef sharks: Does provisioning ecotourism change their behaviour? Coral Reefs 30:569–577. doi: 10.1007/s00338-011-0769-8 CrossRefGoogle Scholar
  14. Friedlander AM, De Martini EE (2002) Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian Islands: the effects of fishing down apex predators. Mar Ecol Prog Ser 230:253–264. doi: 10.3354/meps230253 CrossRefGoogle Scholar
  15. Friedlander AM, Brown EK, Jokiel PL et al (2003) Effects of habitat, wave exposure, and marine protected area status on coral reef fish assemblages in the Hawaiian archipelago. Coral Reefs 22:291–305. doi: 10.1007/s00338-003-0317-2 CrossRefGoogle Scholar
  16. Friedlander AM, Brown E, Monaco ME (2007a) Defining reef fish habitat utilization patterns in Hawaii: comparisons between marine protected areas and areas open to fishing. Mar Ecol Prog Ser 351:221–233. doi: 10.3354/meps07112 CrossRefGoogle Scholar
  17. Friedlander AM, Brown EK, Monaco ME (2007b) Coupling ecology and GIS to evaluate efficacy of marine protected areas in Hawaii. Ecol Appl 17:715–730CrossRefGoogle Scholar
  18. Friedlander A, Stamoulis K, Kittinger J et al (2014) Understanding the scale of Marine protection in Hawai’ i: from community-based management to the remote Northwestern Hawaiian Islands. Advances in marine biology. Academic Press, Oxford, pp 153–203Google Scholar
  19. Gaines SD, White C, Carr MH, Palumbi SR (2010) Designing marine reserve networks for both conservation and fisheries management. Proc Natl Acad Sci USA 107:18286–18293. doi: 10.1073/pnas.0906473107 CrossRefGoogle Scholar
  20. Gotelli NJ, Ellison AM (2013) EcoSimR 1.00Google Scholar
  21. Grüss A, Kaplan DM, Guénette S et al (2011) Consequences of adult and juvenile movement for marine protected areas. Biol Conserv 144:692–702. doi: 10.1016/j.biocon.2010.12.015 CrossRefGoogle Scholar
  22. Harrison HB, Williamson DH, Evans RD et al (2012) Larval export from marine reserves and the recruitment benefit for fish and fisheries. Curr Biol 22:1023–1028. doi: 10.1016/j.cub.2012.04.008 CrossRefGoogle Scholar
  23. Heithaus MR, Frid A, Wirsing AJ, Worm B (2008) Predicting ecological consequences of marine top predator declines. Trends Ecol Evol 23:202–2010. doi: 10.1016/j.tree.2008.01.003 CrossRefGoogle Scholar
  24. Henningsen A (1994) Tonic immobility in 12 elasmobranchs: use as an aid in captive husbandry. Biol Zoo 13:325–332. doi: 10.1002/zoo.1430130406 CrossRefGoogle Scholar
  25. Heupel M, Simpfendorfer C (2014) Importance of environmental and biological drivers in the presence and space use of a reef associated shark. Mar Ecol Prog Ser 496:47–57CrossRefGoogle Scholar
  26. Heupel MR, Semmens JM, Hobday AJ (2006) Automated acoustic tracking of aquatic animals: scales, design and deployment of listening station arrays. Mar Freshw Res 57:1–13. doi: 10.1071/MF05091 CrossRefGoogle Scholar
  27. Heupel MR, Simpfendorfer CA, Fitzpatrick R (2010) Large-scale movement and reef fidelity of grey reef sharks. PLoS One 5:1–5. doi: 10.1371/journal.pone.0009650 CrossRefGoogle Scholar
  28. Holland KN, Lowe CG, Wetherbee BM (1996) Movements and dispersal patterns of blue trevally (Caranx melampygus) in a fisheries conservation zone. Fish Res 25:279–292. doi: 10.1016/0165-7836(95)00442-4 CrossRefGoogle Scholar
  29. Holland KN, Wetherbee BM, Lowe CG, Meyer CG (1999) Movements of tiger sharks (Galeocerdo cuvier) in coastal Hawaiian waters. Mar Biol 134:665–673. doi: 10.1007/s002270050582 CrossRefGoogle Scholar
  30. Hooker SK, Cañadas A, Hyrenbach KD et al (2011) Making protected area networks effective for marine top predators. Endanger Species Res 13:203–218. doi: 10.3354/esr00322 CrossRefGoogle Scholar
  31. Jackson JB, Kirby MX, Berger WH et al (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293(80):629–637. doi: 10.1126/science.1059199 CrossRefGoogle Scholar
  32. Kessel ST, Cooke SJ, Heupel MR et al (2013) A review of detection range testing in aquatic passive acoustic telemetry studies. Rev Fish Biol Fish. doi: 10.1007/s11160-013-9328-4 Google Scholar
  33. Kramer DL, Chapman MR (1999) Implications of fish home range size and relocation for marine reserve function. Environ Biol Fishes 55:65–79CrossRefGoogle Scholar
  34. Le Quesne WJ, Codling EA (2009) Managing mobile species with MPAs: the effects of mobility, larval dispersal, and fishing mortality on closure size. ICES J Mar Sci J du Cons 66:122–131CrossRefGoogle Scholar
  35. Lédée EJI, Heupel MR, Tobin AJ, Simpfendorfer CA (2015) Movements and space use of giant trevally in coral reef habitats and the importance of environmental drivers. Anim Biotelemetry 3:1–14. doi: 10.1186/s40317-015-0024-0 CrossRefGoogle Scholar
  36. Lowe CG, Topping DT, Cartamil DP, Papastamatiou YP (2003) Movement patterns, home range, and habitat utilization of adult kelp bass Paralabrax clathratus in a temperate no-take marine reserve. Mar Ecol Prog Ser 256:205–216CrossRefGoogle Scholar
  37. McCoy K (2015) Estimating nearshore fisheries catch for the main Hawaiian Islands. Unpublished master’s thesis, The University of Hawaii at Manoa, Honolulu, HawaiiGoogle Scholar
  38. Mesnildrey L, Gascuel D, Le Papee O (2013) Integrating marine protected areas in fisheries management systems: some criteria for ecological efficiency integrating marine protected areas in fisheries management systems—some criteria for ecological efficiency. Aquat Living Resour 26:159–170. doi: 10.1051/alr/2013056 CrossRefGoogle Scholar
  39. Meyer CG, Honebrink RR (2005) Transintestinal expulsion of surgically implanted dummy transmitters by bluefin trevally—implications for long-term movement studies. Trans Am Fish Soc 134:602–606. doi: 10.1577/T04-082.1 CrossRefGoogle Scholar
  40. Meyer CG, Holland KN, Wetherbee BM, Lowe CG (2000) Diet, resource partitioning and gear vulnerability of Hawaiian jacks captured in fishing tournaments. Fish Res 1147:1–9Google Scholar
  41. Meyer CG, Holland KN, Papastamatiou YP (2007a) Seasonal and diel movements of giant trevally Caranx ignobilis at remote Hawaiian atolls: implications for the design of marine protected areas. Mar Ecol Prog Ser 333:13–25. doi: 10.3354/meps333013 CrossRefGoogle Scholar
  42. Meyer CG, Papastamatiou YP, Holland KN (2007b) Seasonal, diel, and tidal movements of green jobfish (Aprion virescens, Lutjanidae) at remote Hawaiian atolls: implications for marine protected area design. Mar Biol 151:2133–2143. doi: 10.1007/s00227-007-0647-7 CrossRefGoogle Scholar
  43. Meyer CG, Papastamatiou YP, Clark TB (2010) Differential movement patterns and site fidelity among trophic groups of reef fishes in a Hawaiian marine protected area. Mar Biol 157:1499–1511. doi: 10.1007/s00227-010-1424-6 CrossRefGoogle Scholar
  44. Myers RA, Worm B (2005) Extinction, survival or recovery of large predatory fishes. Phil Trans R Soc B 360:13–20. doi: 10.1098/rstb.2004.1573 CrossRefGoogle Scholar
  45. Payne NL, Gillanders BM, Webber DM, Semmens JM (2010) Interpreting diel activity patterns from acoustic telemetry: the need for controls. Mar Ecol Prog Ser 419:295–301. doi: 10.3354/meps08864 CrossRefGoogle Scholar
  46. Peters RH (1986) The ecological implications of body size, vol 2. Cambridge University Press, CambridgeGoogle Scholar
  47. Price JP, Elliott-fisk D (2004) Topographic history of the Maui Nui complex, Hawai’i, and its implications for biogeography 1. Pac Sci 58:27–45CrossRefGoogle Scholar
  48. Randall JE (1977) Contribution to the biology of the whitetip reef Shark (Triaenodon obesus). Pac Sci 31:143–163Google Scholar
  49. Rice J, Moksness E, Attwood C et al (2012) The role of MPAs in reconciling fisheries management with conservation of biological diversity. Ocean Coast Manag 69:217–230. doi: 10.1016/j.ocecoaman.2012.08.001 CrossRefGoogle Scholar
  50. Russ GR, Miller KI, Rizzari JR, Alcala AC (2015) Long-term no-take marine reserve and benthic habitat effects on coral reef fishes Long-term no-take marine reserve and benthic habitat effects on coral reef fishes. Mar Ecol Prog Ser 529:233–248. doi: 10.3354/meps11246 CrossRefGoogle Scholar
  51. Sakihara TS, Nishiura LK, Shimoda TE et al (2014) Brassy chubs Kyphosus vaigiensis display unexpected trans-island movement along inshore habitats. Environ Biol Fishes. doi: 10.1007/s10641-014-0245-8 Google Scholar
  52. Sale PF, Cowen RK, Danilowicz BS et al (2005) Critical science gaps impede use of no-take fishery reserves. Trends Ecol Evol 20:74–80. doi: 10.1016/j.tree.2004.11.007 CrossRefGoogle Scholar
  53. Sandin SA, Smith JE, Demartini EE et al (2008) Baselines and degradation of coral reefs in the northern Line Islands. PLOS ONE. doi: 10.1371/journal.pone.0001548 Google Scholar
  54. Sciberras M, Jenkins SR, Kaiser MJ et al (2013) Evaluating the biological effectiveness of fully and partially protected marine areas. Environ Evid 2:4. doi: 10.1186/2047-2382-2-4 CrossRefGoogle Scholar
  55. Shomura R (2004) A historical perspective of Hawai’i’s marine resources, fisheries, and management issues over the past 100 years. In: Status of Hawaii’s coastal fisheries in the new millennium, revised 2004 edition. Proceedings of the 2001 fisheries symposium sponsored by the American Fisheries Society, Hawai’i Chapter, pp 6–11Google Scholar
  56. Stamoulis K, Friedlander AM (2013) A seascape approach to investigating fish spillover across a marine protected area boundary in Hawai‘i. Fish Res 144:2–14. doi: 10.1016/j.fishres.2012.09.016 CrossRefGoogle Scholar
  57. Sudekum A, Parrish JD, Ralston S (1991) Life history and ecology of large jacks in undisturbed, shallow, oceanic communities. Fish Bull 89:493–513Google Scholar
  58. Tinhan T, Erisman B, Aburto-Oropeza O et al (2014) Residency and seasonal movements in Lutjanus argentiventris and Mycteroperca rosacea at Los Islotes Reserve, Gulf of California. Mar Ecol Prog Ser 501:191–206. doi: 10.3354/meps10711 CrossRefGoogle Scholar
  59. Toonen RJ, Wilhelm TA, Maxwell SM et al (2013) One size does not fit all: the emerging frontier in large-scale marine conservation. Mar Pollut Bull 77:7–10. doi: 10.1016/j.marpolbul.2013.10.039 CrossRefGoogle Scholar
  60. Vandeperre F, Higgins RM, Sanchez-Meca J et al (2011) Effects of no-take area size and age of marine protected areas on fisheries yields: a meta-analytical approach. Fish Fish 12:412–426. doi: 10.1111/j.1467-2979.2010.00401.x CrossRefGoogle Scholar
  61. Vianna GMS, Meekan MG, Meeuwig JJ, Speed CW (2013) Environmental influences on patterns of vertical movement and site fidelity of grey reef sharks (Carcharhinus amblyrhynchos) at aggregation sites. PLOS ONE. doi: 10.1371/journal.pone.0060331 Google Scholar
  62. Wetherbee BM, Crow GL, Lowe CG (1997) Distribution, reproduction and diet of the gray reef shark Carcharhinus amblyrhynchos in Hawaii. Oceanogr Lit Rev 10:1144–1145Google Scholar
  63. Wetherbee BM, Holland KN, Meyer CG, Lowe CG (2004) Use of a marine reserve in Kaneohe Bay, Hawaii by the giant trevally, Caranx ignobilis. Fish Res 67:253–263. doi: 10.1016/j.fishres.2003.11.004 CrossRefGoogle Scholar
  64. Whitney NM, Papastamatiou YP, Holland KN, Lowe CG (2007) Use of an acceleration data logger to measure diel activity patterns in captive whitetip reef sharks, Triaenodon obesus. Aquat Living Resour 20:299–305. doi: 10.1051/alr CrossRefGoogle Scholar
  65. Whitney NM, Pyle RL, Holland KN, Barcz JT (2012) Movements, reproductive seasonality, and fisheries interactions in the whitetip reef shark (Triaenodon obesus) from community-contributed photographs. Environ Biol Fishes 93:121–136. doi: 10.1007/s10641-011-9897-9 CrossRefGoogle Scholar
  66. Wilhelm T, Sheppard C, Sheppard A et al (2014) Large marine protected areas–advantages and challenges of going big. Aquat Conserv Mar Freshw Ecosyst 24:24–30CrossRefGoogle Scholar
  67. Williams ID, Ma H (2013) Estimating catch weight of reef fish species using estimation and intercept data from the Hawaii Marine Recreational Fishing Survey. Pac Isl Fish Sci Cent Admin Rep H-13-04:53Google Scholar
  68. Williams ID, Baum JK, Heenan A et al (2015) Human, oceanographic and habitat drivers of central and western pacific coral reef fish assemblages. PLOS ONE. doi: 10.1371/journal.pone.0120516 Google Scholar
  69. Wolfe BW, Lowe CG (2015) Movement patterns, habitat use and site fidelity of the white croaker (Genyonemus lineatus) in the Palos Verdes Superfund Site, Los Angeles, California. Mar Environ Res 109:69–80. doi: 10.1016/j.marenvres.2015.06.002 CrossRefGoogle Scholar
  70. Woolnough DA, Downing JA, Newton TJ (2009) Fish movement and habitat use depends on water body size and shape. Ecol Freshw Fish 18:83–91. doi: 10.1111/j.1600-0633.2008.00326.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alexander Filous
    • 1
    Email author
  • Alan Friedlander
    • 1
    • 3
  • Barrett Wolfe
    • 1
  • Kostantinos Stamoulis
    • 1
  • Stephen Scherrer
    • 4
  • Adam Wong
    • 2
  • Kristy Stone
    • 2
  • Russell Sparks
    • 2
  1. 1.Fisheries Ecology Research Lab, Department of BiologyUniversity of Hawai‘i at MānoaHonoluluUSA
  2. 2.Department of Land and Natural ResourcesDivision of Aquatic ResourcesWailukuUSA
  3. 3.Pristine SeasNational Geographic SocietyWashingtonUSA
  4. 4.Pelagic Fisheries Research Program, Department of OceanographyUniversity of Hawai‘i at MānoaHonoluluUSA

Personalised recommendations