Advertisement

Marine Biology

, 163:245 | Cite as

Spatially explicit risk assessment for coastal invaders under different management scenarios

  • Sandra M. Fiori
  • Paula D. Pratolongo
  • Sergio M. Zalba
  • María E. Carbone
  • María E. Bravo
Invasive Species - Original paper
Part of the following topical collections:
  1. Invasive Species

Abstract

Biological invasions are particularly challenging in marine environments, where control strategies are scarce and efforts to reduce the abundance of the invader are costly and difficult, often representing insurmountable challenges. However, the magnitude of the impact of the invasion depends not only on the characteristics of the invading species, but also on the inherent features of the receiving environment; managing the environmental matrix could therefore be the best option for preventing or reducing undesired effects. The objective of the present work was to develop a spatially explicit risk-based approach to evaluate the effectiveness of different management practices designed to mitigate the potential impacts of the Pacific oyster (Crassostrea gigas) in the Bahía Blanca estuary (38°50′S, 62°20′W). A Risk Index (RI) was constructed to assess the potential negative impact of oyster bed expansion on environmental values and human health. RI maps were built to compare the potential effects of different management options in terms of risk reduction. An integral sanitation program within the coastal zone produced the largest reduction in the areas previously ranked as under very low, low, medium, high, and very high risk. Treatment of domestic sewage produced a major reduction in the areas under high and medium risk, mainly in the inner zone of the estuary, but changes in the area under very high risk were negligible. Removal of oysters at specific locations had a modest effect on risk reduction in terms of the whole area, but produced significant improvements at a local scale.

Keywords

Risk Index Middle Reach Domestic Sewage Management Scenario Pacific Oyster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank three reviewers for their constructive comments, which helped us to improve the manuscript. We also thank Eder Dos Santos for field support. This research was funded through research grant by Universidad Nacional del Sur, through a Grant (SECyT-UNS. PGI 24/ZB40).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

Human and animal rights

This article does not contain any studies with animals performed by any of the authors.

References

  1. Albarnaz JD, Toso J, Correa AA, Simoes CM, Barardi CR (2007) Relationship between the contamination of gulls (Larus dominicanus) and oysters (Crassostrea gigas) with Salmonella serovar Typhimurium by PCR-RFLP. Int J Environ Health Res 17:133–140CrossRefGoogle Scholar
  2. Allen CR, Johnson AR, Parris L (2006) A framework for spatial risk assessments: potential impacts of no indigenous invasive species on native species. Ecol Soc 11(1):39 http://www.ecologyandsociety.org/vol11/iss1/art39. Accessed 11 June 2016
  3. Andersen M, Adams H, Hope B, Powell M (2004a) Risk assessment for invasive species. Risk Anal 24:787–793. doi: 10.1111/j.0272-4332.2004.00478.x CrossRefGoogle Scholar
  4. Andersen MC, Adams H, Hope B, Powell M (2004b) Risk analysis for invasive species: general framework and research needs. Risk Anal 24:893–900CrossRefGoogle Scholar
  5. Arias AH, Vazquez-Botello A, Tombesi NB, Ponce-Vélez G, Freije RH, Marcovecchio JE (2010) Presence, distribution and origins of polycyclic aromatic hydrocarbons (PAHs) in sediments from Bahía Blanca estuary, Argentina. Environ Monit Asses 160:301–314CrossRefGoogle Scholar
  6. Baldini M, Cubito MA (2014) Microbiología de la zona interna del estuario de Bahía Blanca. In: Programa de Monitoreo de la Calidad Ambiental de la Zona Interior del Estuario de Bahía Blanca. http://bahiablanca.gov.ar/cte/doc/Informe-Final-Estuario-de-Bahia-Blanca-2014.pdf. Accessed 5 June 2015
  7. Bax N, Carlton JT, Mathews-Amos A, Haedrich RL, Howarth FG, Purcell JE, Rieser A, Gray A (2001) The control of biological invasions in the world’s oceans. Conserv Biol 15:1234–1246CrossRefGoogle Scholar
  8. Bax N, Williamson A, Agüero M, González E, Geeves W (2003) Marine invasive alien species: a threat to global biodiversity. Mar Policy 27:313–323CrossRefGoogle Scholar
  9. Borges, ME (2006) Ecología de las ostras en ambientes del sur bonaerense: cultivo y manejo de sus poblaciones. Tesis de Doctoral. Universidad Nacional del Sur (Argentina)Google Scholar
  10. Botte SE, Freije RH, Marcovecchio JE (2007) Dissolved heavy metal (Cd, Pb, Cr, Ni) concentrations in surface water and porewater from Bahía Blanca Estuary tidal flats. Bull Environ Contam Toxicol 79:415–421CrossRefGoogle Scholar
  11. Bravo ME, Fiori SM, Carbone ME (2016)  Vulnerabilidad de las áreas protegidas del estuario de Bahía Blanca a la expansión de la ostra exótica Crassostrea gigas. III Jornadas de Tecnología de la Información Geográfica del Sur Argentino (Bahía Blanca, Argentina) Google Scholar
  12. Bremec CS, Martínez D, Elias R (2004) Asociaciones bentónicas de fondos duros y comunidades incrustantes. In: Piccolo MC, Hoffmeyer M (eds) Ecosistema del estuario de Bahía Blanca. EDIUNS, Bahía Blanca, pp 171–178Google Scholar
  13. Byers JE (2002) Impact of non-indigenous species on natives enhanced by anthropogenic alteration of selection regimes. Oikos 97:449–458CrossRefGoogle Scholar
  14. Cabezali CB, Baldini MD, Cubitto MA (2004) Estudios Microbiológicos. Bacterias Indicadoras de Contaminación. In: Piccolo MC, Hoffmeyer M (eds) Ecosistema del estuario de Bahía Blanca. EDIUNS, Bahía Blanca, pp 109–120Google Scholar
  15. Carlton JT (1999) Molluscan invasions in marine and estuarine communities. Malacologia 41(2):439–454Google Scholar
  16. Carrasco MF (2012) Distribución geográfica potencial de la ostra del pacífico (Crassostrea gigas) en sustratos litorales marinos argentinos. Tesis Doctoral. Universidad Nacional del Comahue (Argentina)Google Scholar
  17. Carrasco MF, Baron PJ (2010) Analysis of the potential geographic range of the Pacific oyster Crassostrea gigas (Thunberg, 1793) based on surface seawater temperature satellite data and climate charts: the coast of South America as a study case. Biol Invasions 12:2597–2607CrossRefGoogle Scholar
  18. Chew KK (1990) Global bivalve shellfish introductions. World Aquac 21:9–22Google Scholar
  19. Cohen A, Carlton JT (1998) Accelerating invasion rate in a highly invaded estuary. Science 279:555–558CrossRefGoogle Scholar
  20. Commito JA, Como S, Grupe BM, Dow WE (2008) Species diversity in the soft-bottom intertidal zone: biogenic structure, sediment and macrofauna across mussel bed spatial scales. J Exp Mar Biol Ecol 366:70–81CrossRefGoogle Scholar
  21. Crooks JA (2002) Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153–166CrossRefGoogle Scholar
  22. Crooks JA, Chang AL, Ruiz GM (2011) Aquatic pollution increases the relative success of invasive species. Biol Invasions 13:165–176CrossRefGoogle Scholar
  23. Delhey KV, Petracci PF (2004) Aves marinas y costeras. In: Píccolo MC, Hoffmeyer MS (eds) Ecosistema del Estuario de Bahía Blanca. EDIUNS, Bahía Blanca, pp 203–220Google Scholar
  24. Diederich S (2005) Invasion of Pacific oysters (Crassostrea gigas) in the Wadden Sea: competitive advantage over native mussels. Ph.D. thesis, Universität Kiel (Germany)Google Scholar
  25. Dos Santos EP, Fiori SM (2010) Primer registro sobre la presencia de Crassostrea gigas en el estuario de Bahía Blanca (Argentina). Comunicaciones de la Sociedad Malacológica del Uruguay 9(93):245–252Google Scholar
  26. Elias R, Iribarne OO, Bremec CS, Martínez D (2004) Comunidades bentónicas de fondos blandos. In: Piccolo MC, Hoffmeyer M (eds) Ecosistema del estuario de Bahía Blanca. EDIUNS, Bahía Blanca, pp 179–190Google Scholar
  27. Escapa M, Isacch JP, Daleo P, Alberti J, Iribarne OO, Borges M, Dos Santos EP, Galiardini D, Lasta M (2004) The distribution and ecological effects of the invasive Pacific Oyster Crassostrea gigas (Thunberg, 1793) in Northern Patagonia. J Shellfish Res 23(3):765–772Google Scholar
  28. Ferrer L, Contardi E, Andrade SJ, Astesuain R, Pucci AE, Marcovecchio JE (2000) Environmental cadmiun and lead concetrations in the Bahía Blanca Estuary (Argentina). Potential toxic effects of Cd and Pb on crab larvae. Oceanologia 42(4):493–504Google Scholar
  29. Foxcroft LC, Rouget M, Richardson DM (2007) Risk assessment of riparian plant invasions into protected areas. Conserv Biol 21(2):412–421CrossRefGoogle Scholar
  30. Freije RH, Spetter CV, Marcovecchio JE, Popovich CA, Botté SE, Negrín VL, Arias AH, Delucchi F, Asteasuain RO (2008) Water chemistry and nutrients of the Bahía Blanca Estuary. In: Neves R, Baretta J, Mateus M (eds) Perspectives on integrated coastal zone management in South America. Part B: from shallow water to the deep fjord: the study sites. IST Scientific Publishers, Portugal, pp 243–256Google Scholar
  31. Geffard O, Geffard A, His E, Budzinski H (2003) Assessment of the bioavailability and toxicity of sediment-associated polycyclic aromatic hydrocarbons and heavy metals applied to Crassostrea gigas embryos and larvae. Mar Pollut Bull 46(4):481–490CrossRefGoogle Scholar
  32. Guy C, Robert D (2010) Can the spread of non-native oysters (Crassostrea gigas) at the early stages of population expansion be managed? Mar Pollut Bull 60:1059–1064CrossRefGoogle Scholar
  33. Han BC, Jeng WL, Chen RY (1998) Estimation of target hazard quotients and potential health risks for metals by consumption of seafood in Taiwan. Arch Environ Contam Toxicol 35:711–720CrossRefGoogle Scholar
  34. Harris J (2008) Pacific oyster, Crassostrea gigas (Thunberg, 1793). Aquat Invasion Ecol 5:1–12. http://depts.washington.edu/oldenlab/wordpress/wp-content/uploads/2013/02/Crassostrea-gigas_Harris.pdf. Accessed 10 Dec 2015
  35. Hoffmeyer MS, Barría de Cao MS (2007) Zooplankton assemblages from a tidal channel in the Bahía Blanca Estuary, Argentina. Braz J Oceanogr 55:97–107CrossRefGoogle Scholar
  36. Isacch JPC, Costa SB, Rodríguez Gallego L, Conde D, Escapa M, Gagliardini DA, Iribarne OO (2006) Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. J Biogeogr 33:888–900CrossRefGoogle Scholar
  37. Iwamoto M, Ayers T, Mahon BE, Swerdlow DL (2010) Epidemiology of seafood associated infections in the United States. Clin Microbiol Rev 23:399–411CrossRefGoogle Scholar
  38. Kappel CV (2005) Losing pieces of the puzzle: threats to marine, estuarine and diandromous species. Front Ecol Environ 3(5):275–282CrossRefGoogle Scholar
  39. Leguerrier D, Niquil N, Petiau A, Bodoy A (2004) Modeling the impact of oyster culture on a mudflat food web in Marennes-Oléron Bay (France). Mar Ecol Prog Ser 273:147–162CrossRefGoogle Scholar
  40. López Cazorla A (2004) Peces. In: Piccolo C, Hoffmeyer M (eds) Ecosistema del Estuario de Bahía Blanca. EDIUNS, Bahía Blanca, pp 191–201Google Scholar
  41. MacDougall AS, Turkington R (2005) Are invasive species the drivers or passengers on changes in degraded ecosystems. Ecology 86:42–55CrossRefGoogle Scholar
  42. Marcovecchio JE, Andrade JS, Ferrer LD, Asteasuain RO, De Marco SG, Gavio MA, Scarlato NA, Freije RH, Pucci AE (2001) Mercury distribution in estuarine environments from Argentina: the detoxification and recovery of salt-marshes after 15 years. Wetland Ecol Manag 9:317–322CrossRefGoogle Scholar
  43. Marcovecchio JE, Botté SE, Delucchi F, Arias AH, Fernández Severini MD, De Marco SG, Tombesi N, Andrade S, Ferrer L, Freije RH (2008) Pollution processes in Bahía Blanca estuarine environment. In: Neves R, Baretta J, Marteus M (eds) Perspectives on integrated coastal zone management in South America, Part C: from shallow water to the deep fjord: the study sites. IST Press, Portugal, pp 301–314Google Scholar
  44. Martin RB, Cooper S (2002) National Introduced Marine Pest Information System (NIMPIS): introduced species guide: CSIRO, Hobart, Tas. (Australia). Accessed 25 June 2016Google Scholar
  45. Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6(9):485–492. doi: 10.1890/070064 CrossRefGoogle Scholar
  46. Nebbia AJ, Zalba SM (2006) Designing nature reserves: traditional criteria may act as misleading indicators of quality. Biodiv Conserv 16(1):223–233CrossRefGoogle Scholar
  47. Negrin VL, Botté SE, Pratolongo PD, Trilla GG, Marcovecchio JE (2016) Ecological processes and biogeochemical cycling in salt marshes: synthesis of studies in the Bahía Blanca estuary (Argentina). Hydrobiologia 774(1):217–235CrossRefGoogle Scholar
  48. Neira R, Días ND, Gall GA, Gallardo JA, Lhorente JP, Alert A (2006) Genetic improvement in cohosalmon (Oncorhynchuskisutch). II: selection response for early spawning date. Aquaculture 257:1–8CrossRefGoogle Scholar
  49. Nichols FH, Thompson JK, Scheme LE (1990) Potamocorbulaamurensis. 11. Displacement of a former community. Mar Ecol Prog Ser 66:95–101CrossRefGoogle Scholar
  50. Oguz T, Fach B, Salihoglu B (2008) Invasion dynamics of the alien ctenophore Mnemiopsisleidyi and its impact on anchovy collapse in the Black Sea. J Plankton Res 30:1385–1397CrossRefGoogle Scholar
  51. Orensanz JM, Schwindt E, Pastorino G, Bortolus A, Casas G, Darrigran G, Elias R, Lopez Gappa JJ, Obenat S, Pascual MS, Penchaszadeh P, Piriz ML, Scarabino F, Spivak ED, Vallarino EA (2002) No longer the pristine confines of the world ocean: a survey of exotic marine species in the southwestern Atlantic. Biol Invasions 4:115–143CrossRefGoogle Scholar
  52. Perillo GME, Piccolo MC, Parodi E, Freije RH (2001) The Bahía Blanca Estuary, Argentina. In: Seeliger U, Kjerfve B (eds) Coastal marine ecosystems of Latin America: Ecological Studies. Springer, Berlin, pp 205–217Google Scholar
  53. Piccolo MC, Perillo GME, Melo W (2008) The Bahıa Blanca estuary: an integrated overview of its geomorphology and dynamics. In: Neves R, Baretta JW, Mateus M (eds) Perspectives on integrated coastal zone management in South America. IST Press, Lisbon, pp 219–229Google Scholar
  54. Pimentel D (ed) (2011) Biological invasions. Environmental and economic costs of alien plant, animal and microbe species. Taylor and Francis Group, Boca RatónGoogle Scholar
  55. Piola RF, Johnston EL (2008) Pollution reduces native diversity and increases invader dominance in marine hardsubstrate communities. Divers Distrib 14:329–342CrossRefGoogle Scholar
  56. Popovich CA, Marcovecchio JE (2008) Spatial and temporal variability of phytoplankton and environmental factors in a temperate estuary of South America (Atlantic coast, Argentina). Cont Shelf Res 28:236–244CrossRefGoogle Scholar
  57. Popovich CA, Spetter CV, Marcovecchio JE, Freije RH (2008) Dissolved nutrient availability during winter diatom bloom in a turbid and shallow estuary (Bahía Blanca, Argentina). J Coastal Res. doi: 10.2112/06-0656.1 Google Scholar
  58. Pratolongo PD, Perillo GME, Piccolo MC (2010) Combined effects of waves and plants on a mud deposition event at a mudflat-saltmarsh edge in the Bahía Blanca estuary. Estuar Coast Shelf Sci 87:207–212. doi: 10.1016/j.ecss.2009.09.024 CrossRefGoogle Scholar
  59. Pratolongo P, Mazzon C, Zapperi G, Piovan MJ, Brinson MM (2013) Land cover changes in tidal salt marshes of the Bahía Blanca estuary (Argentina) during the past 40 years. Estuar Coast Shelf Sci 133:23–31. doi: 10.1016/j.ecss.2013.07.016 CrossRefGoogle Scholar
  60. Pysek P, Richardson DM (2010) Invasive species, environmental change and management, and health. Annu Rev Environ Resour 35:25–55. doi: 10.1146/annurev-environ-033009-095548 CrossRefGoogle Scholar
  61. Reise KS, Van Beusekom JEE (2008) Interactive effects of global and regional change on a coastal ecosystem. Helgoland Mar Res 62:85–91CrossRefGoogle Scholar
  62. Ren JS, Ross AH, Schiel DR (2000) Functional desriptions of feeding and energetics of the Pacific oyster Crassostrea gigas in New Zealand. Mar Ecol Prog Ser 208:119–130CrossRefGoogle Scholar
  63. Ricciardi A (2007) Are modern biological invasions an unprecedented form of global change? Conserv Biol 21(2):329–336CrossRefGoogle Scholar
  64. Roche MA, Narvarte MA, Maggioni M, Cardón R (2010) Monitoreo de la invasión de la ostra cóncava Crassostrea gigas en la costa norte de Rio Negro: estudio preliminar. IV Reunion Binacional de Ecologia, Buenos AiresGoogle Scholar
  65. Ruesink JL, Lenihan HS, Trimble AC, Heiman KW, Micheli F, Byers JE, Kay MC (2005) Introduction of non-native oysters: ecosystem effects and restoration implications. Annu Rev Ecol Evol Syst 36:643–689CrossRefGoogle Scholar
  66. Ruiz GM, Rawlings TK, Dobbs FC, Drake LA, Mullady T, Hug A, Colwell RR (2000) Global spread of microorganisms by ships. Nature 408:49–50. doi: 10.1371/journal.pbio.1002130 CrossRefGoogle Scholar
  67. Schaffelke B, Smith JE, Hewitt CL (2006) Introduced macroalgae—a growing concern. In: Eighteenth international seaweed symposium. Springer, pp 303–315Google Scholar
  68. Seas C, Miranda J, Gil AI, Leon-Barua R, Patz J, Huq A, Colwell RR, Sack RB (2000) New insights on the emergence of cholera in Latin America during 1991: the Peruvian experience. Am J Trop Med Hyg 62:513–517Google Scholar
  69. Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascal M, Pyšek P, Sousa R, Tabacchi E, Vilà M (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28(1):58–66CrossRefGoogle Scholar
  70. Sousa R, Gutiérrez JL, Aldridge DC (2009) Non-indigenous invasive bivalves as ecosystem engineers. Biol Invasions 11:2367–2385CrossRefGoogle Scholar
  71. Spetter CA, Popovich CA, Arias A, Asteasuain RO, Freije RH, Marcovecchio JE (2015) Role of nutrients in the phytoplankton development during a winter diatom bloom in a eutrophic South American estuary (Bahía Blanca, Argentina). J Coastal Res 31(1):76–87CrossRefGoogle Scholar
  72. Strayer DL (2010) Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biol 55(Suppl. 1):152–174. doi: 10.1111/j.1365-2427.2009.02380.x CrossRefGoogle Scholar
  73. Suárez N, Retana MV, Yorio P (2012) Spatial patterns in the use of foraging areas and its relationship with prey resources in the threatened Olrog’s Gull (Larus atlanticus). J Ornithol 153:861–871CrossRefGoogle Scholar
  74. Tamburri MN, Zimmer RK, Zimmer CA (2007) Mechanisms reconciling gregarious larval settlement with adult cannibalism. Ecol Monogr 77:255–268CrossRefGoogle Scholar
  75. Tombesi NB, Pistonesi MF, Freije RH (2000) Physico-chemical characterization and quality improvement evaluation of primary treated municipal waste wáter in the City of Bahía Blanca (Argentina). Ecol Environ Conserv 6:147–151Google Scholar
  76. Troost K, Gelderman E, Kamermans P, Smaal AC, Wolff W (2009) Effects of an increasing filter feeder stock on larval abundance in the Oosterschelde estuary (SW Netherlands). J Sea Res 61:153–164CrossRefGoogle Scholar
  77. Vega Corrales LA, Marín-Vindas C (2014) Evaluation of Escherichia coli concentrations in Crassostrea gigas and seawater in two oyster growing areas in the Gulf of Nicoya, Costa Rica. Rev Mar Cost 6:155–166. doi: 10.15359/revmar.6.11 CrossRefGoogle Scholar
  78. Whittier TR, Ringold PL, Herlihy AT, Pierson SM (2008) A calcium-based invasion risk assessment for zebra and quagga mussels (Dreissena spp). Front Ecol Environ 6:180–184CrossRefGoogle Scholar
  79. Wilkie EM, Bishop MJ, O’Connor WA (2013) The density and spatial arrangement of the invasive oyster Crassostrea gigas determines its impact on settlement of native oyster larva. Ecol Evol. 3(15):4851–4860. doi: 10.1002/ece3.872 CrossRefGoogle Scholar
  80. Woodford DJ, McIntosh AR (2010) Evidence of source-sink metapopulations in a vulnerable native galaxid fish driven by introduced trout. Ecol Appl 20:967–977CrossRefGoogle Scholar
  81. Yorio PM, Punta G, Rábano D, Rabuffetti F, Herrera G, Saravia J, Friedrich P (1997) A newly discovered breeding sites of Olrog´s Gull Larus atlanticus in Argentina. Bird Conserv Int 7:161–165CrossRefGoogle Scholar
  82. Yorio P, Bertellotti M, Gandini P, Frere E (1998) Kelp Gulls Larusdominicanus breeding on the Argentine coast: population status and relationship with coastal management and conservation. Mar Ornithol 26:11–18Google Scholar
  83. Zapperi G, Pratolongo P, Piovan MJ, Marcovechio J (2016) Benthic–Pelagic coupling in an intertidal mudflat in the Bahía Blanca Estuary (SW Atlantic). J Coast Res 32(3):629–637. doi: 10.2112/JCOASTRES-D-14-00064.1 CrossRefGoogle Scholar
  84. Zedler JB, Kercher S (2004) Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Crit Rev Plant Sci 23:431–452CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Instituto Argentino de OceanografíaUniversidad Nacional del Sur, CONICET, IADOBahía BlancaArgentina
  2. 2.Departamento de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina

Personalised recommendations