Advertisement

Marine Biology

, 163:170 | Cite as

Characterization of three novel species of Labyrinthulomycota isolated from ochre sea stars (Pisaster ochraceus)

  • Rebecca FioRito
  • Celeste Leander
  • Brian Leander
Original paper

Abstract

The Labyrinthulomycota (Stramenopiles) is an enigmatic group of saprobic protists that play an important role as marine decomposers, yet whose phylogenetic relationships and ecological roles remain to be clearly understood. We investigated whether members of this group were present on ochre sea stars (Pisaster ochraceus) showing symptoms of sea star wasting disease. Although largely decomposers, some members of the Labyrinthulomycota are also known to be opportunistic pathogens of animals such as abalone, clams and flatworms and cause severe wasting diseases in eelgrass populations worldwide. Three new isolates of Labyrinthulomycota were discovered from the tissues of P. ochraceus collected at Bamfield Marine Research Centre (48°83.6′N, 125°13.6′W) and Reed Point Marina (49°29.1′N, 122°88.3′W) in British Columbia. The new isolates were kept in culture for several months and characterized at the morphological level and with 18S rDNA sequences. Molecular phylogenetic analyses demonstrated that each of the three new isolates clustered within a different subclade of the Labyrinthulomycota: (1) Oblongichytrium, (2) Aplanochytrium and (3) an early diverging clade of environmental DNA sequences. These data enabled us to establish one new genus and three new species of Labyrinthulomycota: Stellarchytrium dubum gen. et sp. nov., Oblongichytrium porteri sp. nov. and Aplanochytrium blankum sp. nov. This is the first account of the Labyrinthulomycota isolated from the tissues of sea stars with a potential link to sea star wasting disease reported for P. Ochraceus.

Keywords

Molecular Phylogenetic Analysis Dermal Tissue Contractile Vacuole Thraustochytrium Dense Clump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank all current and former members of the Leander lab for their help, support and encouragement in this process. A special thanks to Sarah Sparrman, Greg Gravelis and Kevin Wakeman for their help in genetic and imaging techniques. This research was supported by grants to BSL from the National Science and Engineering Research Council of Canada (NSERC 2014-05258) and the Canadian Institute for Advanced Research Program in Integrated Microbial Biodiversity.

Compliance with ethical standards

Ethical approval

All applicable international, national and institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the Institution University of British Columbia, Vancouver and Bam field where the studies were conducted.

References

  1. Anderson RS, Kraus BS, McGladdery SE, Reece KS, Stokes NA (2003) A thraustochytrid protist isolated from Mercenaria mercenaria: molecular characterization and host defense responses. Fish Shellfish Immunol 15:183–194. doi: 10.1016/S1050-4648(02)00157-2 CrossRefGoogle Scholar
  2. Behnke A, Bunge J, Barjer K, Breiner HW, Alla V, Stoeck T (2006) Microeukaryote community patterns along an 02/H2S gradient in a supersuldific anoxic fjord (Framvaren, Norway). Appl Environ Microbiol 72:3626–3636. doi: 10.1128/AEM.72.5.3626-3636.2006 CrossRefGoogle Scholar
  3. Bower SM (1987a) Pathogenicity and host specificity of Labyrinthuloides haliotidis (Protozoa: Labyrinthomorpha), a parasite of juvenile abalone. Can J Zool 65:2008–2012. doi: 10.1139/z87-305 CrossRefGoogle Scholar
  4. Bower SM (1987b) Artificial culture of Labyrinthuloides haliotidis (Protozoa: Labyrinthomorpha), a pathogenic parasite of abalone. Can J Zool 65:2013–2020. doi: 10.1139/z87-306 CrossRefGoogle Scholar
  5. Burge CA, Kim CJS, Lyles JM, Harvell CD (2013) Special issues oceans and human health: the ecology of marine opportunists. Microb Ecol. doi: 10.1007/s00248-013-0190-7 Google Scholar
  6. Collado-Mercado E, Radway JC, Collier JL (2010) Novel uncultivated labyrinthulomycetes revealed by 18 s rDNA sequences from seawater and sediment samples. Aquar Microb Ecol 58:215–228. doi: 10.3354/ame01361 CrossRefGoogle Scholar
  7. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772. doi: 10.1038/nmeth.2109 CrossRefGoogle Scholar
  8. Eisenlord ME, Groner ML, Yoshioka RM et al (2015) Ochre star mortality during the 2014 wasting disease epizootic: role of population size structure and temperature. Philos Trans R Soc B 371:20150212. doi: 10.1098/rstb.2015.0212 CrossRefGoogle Scholar
  9. Hewson I, Button JB, Gudenkauf BM et al (2014) Densovirus associated with sea-star wasting disease and mass mortality. Proc Natl Acad Sci 111:17278–17283. doi: 10.1073/pnas.1416625111 CrossRefGoogle Scholar
  10. Honda D, Yokochi T, Nakahara T, Raghukumar S, Nakagiri A, Schaumann K, Higashihara T (1999) Molecular phylogeny of labyrinthulids and thraustochytrids based on the sequencing of 18S ribosomal RNA gene. J Eukaryot Microbiol 46:637–647. doi: 10.1111/j.1550-7408.1999.tb05141.x CrossRefGoogle Scholar
  11. Leander C, Porter D (2001) The Labyrinthulomycota is comprised of three distinct lineages. Mycologia 93(3):459–464. doi: 10.2307/3761732 CrossRefGoogle Scholar
  12. Leander CA, Porter D, Leander BS (2004) Comparative morphology and molecular phylogeny of aplanochytrids (Labyrinthulomycota). Eur J Protistol 40(4):317–328. doi: 10.1016/j.ejop.2004.07.003 CrossRefGoogle Scholar
  13. Maddison DR, Maddison WP (2001) MacClade 4: analysis of phylogeny and character evolution. Sinauer Associates Inc, Sunderland, MAGoogle Scholar
  14. Patterson DJ (1989) Stramenopiles: chromophytes from a protistan perspective. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae: problems and perspectives. Clarendon Press, OxfordGoogle Scholar
  15. Porter D (1989) Phylum Labyrinthulomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of protoctista. Jones and Bartlett Publishers, Boston, pp 388–398Google Scholar
  16. Ragan MA, MacCallum GS, Murphy CA, Cannone JJ, Gutell RR, McGladdery SE (2000) Protistan parasite QPX of hard-shell clam Mercenaria mercenaria is a member of Labyrinthulomycota. Dis Aquat Organ 42:185–190. doi: 10.3354/dao042185 CrossRefGoogle Scholar
  17. Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur J Protistol 38:127–145. doi: 10.1078/0932-4739-00832 CrossRefGoogle Scholar
  18. Raghukumar S, Damare VS (2011) Increasing evidence for the important role of Labyrinthulomycetes in marine ecosystems. Bot Mar 54(1):3–11. doi: 10.1515/bot.2011.008 CrossRefGoogle Scholar
  19. Ronquist F, Teslenko M, van der Mark P et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542. doi: 10.1093/sysbio/sys029 CrossRefGoogle Scholar
  20. Schärer L, Knoflach D, Vizoso DB, Rieger G, Peintner U (2007) Thraustochytrids as novel parasitic protists of marine free-living flatworms: Thraustochytrium caudivorum sp. nov. parasitized Macrostomum lignano. Mar Biol. doi: 10.1007/s00227-007-0755-4 Google Scholar
  21. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi: 10.1038/nmeth.2089 CrossRefGoogle Scholar
  22. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 75(5):758–771. doi: 10.1080/10635150802429642 CrossRefGoogle Scholar
  23. Sullivan BK, Sherman TD, Damare VS, Lilje O, Gleason FH (2013) Potential roles of Labyrinthula spp. in global seagrass population declines. Fungal Ecol 6(5):328–338. doi: 10.1016/j.funeco.2013.06.004 CrossRefGoogle Scholar
  24. Takishita K, Yubuki N, Kakizoe N, Inagaki Y, Maruyama T (2007) Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures. Extremophiles 11:563–576. doi: 10.1007/s00792-007-0068-z CrossRefGoogle Scholar
  25. Tsui CKM, Marshall W, Yokoyama R, Honda D, Lippmeier JC, Craven KD, Peterson PD, Berbee ML (2009) Labyrinthulomycetes phylogeny and its implications for the evolutionary loss of chloroplasts and gain of ectoplasmic gliding. Mol Phylogenet Evol 50(1):129–140. doi: 10.1016/j.ympev.2008.09.027 CrossRefGoogle Scholar
  26. Uthicke S, Schaffelke B, Byrne M (2009) A boom-bust phylum? Ecological and evolutionaryconsequences of density variations in echinoderms. Ecol Monogr 79:3–24. doi: 10.1890/07-2136.1 CrossRefGoogle Scholar
  27. Yokoyoma R, Honda D (2007) Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics and 18 s rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. Mycoscience 48:199–211. doi: 10.1007/s10267-006-0362-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Departments of Botany and ZoologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations