Marine Biology

, 163:134 | Cite as

High-temperature acclimation strategies within the thermally tolerant endosymbiont Symbiodinium trenchii and its coral host, Turbinaria reniformis, differ with changing pCO 2 and nutrients

  • Kenneth D. Hoadley
  • D. Tye Pettay
  • Andréa G. Grottoli
  • Wei-Jun Cai
  • Todd F. Melman
  • Stephen Levas
  • Verena Schoepf
  • Qian Ding
  • Xiangchen Yuan
  • Yongchen Wang
  • Yohei Matsui
  • Justin H. Baumann
  • Mark E. Warner
Original paper


The dinoflagellate Symbiodinium trenchii associates with a wide array of host corals throughout the world, and its thermal tolerance has made it of particular interest within the context of reef coral resilience to a warming climate. However, future reefs are increasingly likely to face combined environmental stressors, further complicating our understanding of how S. trenchii will possibly acclimatize to future climate scenarios. Over a 33-day period, we characterized the individual and combined affects of high temperature (26.5 vs. 31.5 °C), pCO2 (400 vs. 760 µatm), and elevated nutrients (0.4 and 0.2 vs. 3.5 and 0.3 µmol of NO3/NO2 and \({\text{PO}}_{4}^{3 - }\), respectively) on S. trenchii within the host coral species Turbinaria reniformis. Global analysis across all treatments found temperature to be the largest driver of physiological change. However, exposure to elevated temperature led to changes in symbiont physiology that differed across pCO2 concentrations. Net photosynthesis and cellular chlorophyll a increased with temperature under ambient pCO2, whereas temperature-related differences in cellular volume and its affect on pigment packaging were more pronounced under elevated pCO2. Furthermore, increased nutrients mitigated the physiological response to high temperature under both ambient and elevated pCO2 conditions and represented a significant interaction between all three physical parameters. Individual responses to temperature and pCO2 were also observed as cellular density declined with elevated temperature and calcification along with respiration rates declined with increased pCO2. Symbiodinium trenchii remained the dominant symbiont population within the host across all treatment combinations. Our results reveal distinct physiological changes in response to high temperature within the S. trenchii/T. reniformis symbioses that are dependent on pCO2 and nutrient concentration, and represent important interactive effects to consider as we consider how corals will respond under future climate change scenarios.


Dissolve Inorganic Carbon PSII Reaction Center High pCO2 Elevated pCO2 pCO2 Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the employee’s at Reef Systems Coral Farm for their assistance with maintaining coral colonies prior to experimentation and with construction of the experimental systems. The work was funded by the National Science Foundation, Grant Nos. 1041124 and 1316055.

Supplementary material

227_2016_2909_MOESM1_ESM.pdf (165 kb)
Supplementary material 1 (PDF 165 kb)


  1. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad USA 105:17442–17446CrossRefGoogle Scholar
  2. Anthony KRN, Maynard JA, Diaz-Pulido G, Mumby PJ, Marshall PA, Cao L, Hoegh-Guldberg O (2011) Ocean acidification and warming will lower coral reef resilience. Glob Change Biol 17:1798–1808CrossRefGoogle Scholar
  3. Aronson RB, Precht WF (2000) Herbivory and algal dynamics on the coral reef at Discovery Bay, Jamaica. Limnol Oceanogr 45:251–255CrossRefGoogle Scholar
  4. Béraud E, Gevaert F, Rottier C, Ferrier-Pagès C (2013) The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont. J Exp Biol 216:2665–2674CrossRefGoogle Scholar
  5. Borell EM, Bischof K (2008) Feeding sustains photosynthetic quantum yield of a scleractinian coral during thermal stress. Oecologia 157:593–601CrossRefGoogle Scholar
  6. Borell EM, Yuliantri AR, Bischof K, Richter C (2008) The effect of heterotrophy on photosynthesis and tissue composition of two scleractinian corals under elevated temperature. J Exp Mar Biol Ecol 364:116–123CrossRefGoogle Scholar
  7. Brading P, Warner ME, Smith DJ, Suggett DJ (2013) Contrasting modes of inorganic carbon acquisition amongst Symbiodinium (Dinophyceae) phylotypes. New Phytol 200:432–442CrossRefGoogle Scholar
  8. Buxton L, Takahashi S, Hill R, Ralph PJ (2012) Variability in the primary site of photosynthetic damage in Symbiodinium sp. (dinophyceae) exposed to thermal stress1. J Phycol 48:117–126CrossRefGoogle Scholar
  9. Cai WJ, Hu X, Huang WJ, Jiang LQ, Wang Y, Peng TH, Zhang X (2010) Alkalinity distribution in the western North Atlantic Ocean margins. J Geophys Res. doi: 10.1029/2009JC005482 Google Scholar
  10. Comeau S, Gorsky G, Jeffree R, Teyssie JL, Gattuso JP (2009) Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina). Biogeosciences 6:1877–1882CrossRefGoogle Scholar
  11. Comeau S, Edmunds PJ, Spindel NB, Carpenter RC (2013) The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point. Limnol Oceanogr 589:388–398CrossRefGoogle Scholar
  12. Cook CB, Mullerparker G, Orlandini CD (1994) Ammonium enhancement of dark carbon fixation and nitrogen limitation in zooxanthellae symbiotic with the reef corals Madracis mirabilis and Montastrea annularis. Mar Biol 118:157–165CrossRefGoogle Scholar
  13. Cunning R, Baker AC (2013) Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat Clim Change 3:259–262CrossRefGoogle Scholar
  14. Cunning R, Vaughan N, Gillette P, Capo TR, Maté JL, Baker AC (2015) Dynamic regulation of partner abundance mediates response of reef coral symbioses to environmental change. Ecology 96:1411–1420CrossRefGoogle Scholar
  15. D’Angelo C, Wiedenmann J (2014) Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Curr Opin Environ Sustain 7:82–93CrossRefGoogle Scholar
  16. Dimond JL, Holzman BJ, Bingham BL (2012) Thicker host tissues moderate light stress in a cnidarian endosymbiont. J Exp Biol 215:2247–2254CrossRefGoogle Scholar
  17. Edmunds PJ (2011) Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites spp. Limnol Oceanogr 56:2402–2410CrossRefGoogle Scholar
  18. Edmunds PJ, Carpenter RC, Comeau S (2013) Understanding the threats of ocean acidification to coral reefs. Oceanography 26:149–152CrossRefGoogle Scholar
  19. Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50:125–146CrossRefGoogle Scholar
  20. Falkowski P, Dubinsky Z, Muscatine L, McCloskey LR (1993) Population control in symbiotic corals. Biol Sci 43:606–611Google Scholar
  21. Ferrier-Pagès C, Rottier C, Beraud E, Levy O (2010) Experimental assessment of the feeding effort of three scleractinian coral species during a thermal stress: effect on the rates of photosynthesis. J Exp Mar Biol Ecol 390:118–124CrossRefGoogle Scholar
  22. Finkel ZV (2001) Light absorption and size scaling of light-limited metabolism in marine diatoms. Limnol Oceanogr 46:86–94CrossRefGoogle Scholar
  23. Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr 45:677–685CrossRefGoogle Scholar
  24. Fitt W, Brown BE, Warner M, Dunne R (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65CrossRefGoogle Scholar
  25. Furman BT, Heck KL (2008) Effects of nutrient enrichment and grazers on coral reefs: an experimental assessment. Mar Ecol Prog Ser 363:89–101CrossRefGoogle Scholar
  26. Gao K, Helbling EW, Hader D-P, Hutchins DA (2012) Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming. Mar Ecol Prog Ser 470:167–189CrossRefGoogle Scholar
  27. Gibbin EM, Davy SK (2014) The photo-physiological response of a model cnidarian-dinoflagellate symbiosis to CO2-induced acidification at the cellular level. J Exp Mar Biol Ecol 457:1–7CrossRefGoogle Scholar
  28. Gorbunov MY, Falkowski PG (eds) (2004) Fluorescence induction and relaxation (FIRe) technique and instrumentation for monitoring photosynthetic processes and primary production in aquatic ecosystems. Allen Press Lawrence, KS, pp 1029–1031Google Scholar
  29. Grottoli AG, Rodrigues LJ, Juarez C (2004) Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar Biol 145:621–631CrossRefGoogle Scholar
  30. Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189CrossRefGoogle Scholar
  31. Grottoli AG, Warner ME, Levas SJ, Aschaffenburg MD, Schoepf V, McGinley M, Baumann J, Matsui Y (2014) The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob Change Biol. doi: 10.1111/gcb.12658 Google Scholar
  32. Hawkins TD, Hagemeyer JCG, Hoadley KD, Marsh AG, Warner ME (2016) Partitioning of respiration in an animal-algal symbiosis: implications for different aerobic capacity between Symbiodinium spp. Front Physiol 7:128CrossRefGoogle Scholar
  33. Helbling EW, Buma AGJ, Boelen P, Van der Strate HJ, Giordanino M, Villafane VE (2011) Increase in Rubisco activity and gene expression due to elevated temperature partially counteracts ultraviolet radiation-induced photoinhibition in the marine diatom Thalassiosira weissflogii. Limnol Oceanogr 56:1330–1342CrossRefGoogle Scholar
  34. Hennige SJ, McGinley MP, Grottoli AG, Warner ME (2011) Photoinhibition of Symbiodinium spp. within the reef corals Montastraea faveolata and Porites astreoides: implications for coral bleaching. Mar Biol 158:2515–2526CrossRefGoogle Scholar
  35. Hoadley KD, Pettay DT, Grottoli A, Cai WJ, Melman TF, Schoepf V, Hu X, Li Q, Xu H, Wang Y, Matsui Y, Baumann J, Warner ME (2015a) Physiological response to elevated temperature and pCO2 varies across four Pacific coral species: understanding the unique host + symbiont response. Sci Rep 5:18371. doi: 10.1038/srep18371 CrossRefGoogle Scholar
  36. Hoadley KD, Rollison D, Pettay DT, Warner ME (2015b) Differential carbon utilization and asexual reproduction under elevated pCO2 conditions in the model anemone, Exaiptasia pallida, hosting different symbionts. Limnol Oceanogr 60:2108–2120CrossRefGoogle Scholar
  37. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528CrossRefGoogle Scholar
  38. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefGoogle Scholar
  39. Holcomb M, McCorkle DC, Cohen AL (2010) Long-term effects of nutrient and CO2 enrichment on the temperate coral Astrangia poculata (Ellis and Solander, 1786). J Exp Mar Biol Ecol 386:27–33CrossRefGoogle Scholar
  40. Hughes TP, Connell JH (1999) Multiple stressors on coral reefs: a long-term perspective. Limnol Oceanogr 44:932–940CrossRefGoogle Scholar
  41. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933CrossRefGoogle Scholar
  42. IPCC (2013) Summary for policymakers. In: Groupe d’experts intergouvernemental sur l’evolution du climat/Intergovernmental Panel on Climate Change-IPCC (ed) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. C/O World Meteorological Organization, 7bis Avenue de la Paix, CP 2300 CH-1211 Geneva 2, SwitzerlandGoogle Scholar
  43. Johannes RE, Wiebe WJ (1970) Method for determination of coral tissue biomass and composition. Limnol Oceanogr 15:822–824CrossRefGoogle Scholar
  44. Jokiel PL, Margos JW, Franzisket L (1978) Coral growth buoyant weight technique. UNESCO, Paris, pp 529–542Google Scholar
  45. Jones A, Berkelmans R (2010) Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types. PLoS ONE 5:e10437CrossRefGoogle Scholar
  46. Kaniewska P, Campbell PR, Kline DI, Rodriguez-Lanetty M, Miller DJ, Dove S, Hoegh-Guldberg O (2012) Major cellular and physiological impacts of ocean acidification on a reef building coral. PLoS ONE. doi: 10.1371/journal.pone.0034659 Google Scholar
  47. Kaniewska P, Chan C-KK, Kline D, Ling EYS, Rosic N, Edwards D, Hoegh-Guldberg O, Dove S (2015) Transcriptomic changes in coral holobionts provide insights into physiological challenges of future climate and ocean change. PLoS ONE 10:e0139223CrossRefGoogle Scholar
  48. Key T, McCarthy A, Campbell DA, Six C, Roy S, Finkel ZV (2010) Cell size trade-offs govern light exploitation strategies in marine phytoplankton. Environ Microbiol 12:95–104CrossRefGoogle Scholar
  49. Kolber Z, Falkowski P (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys 1367:88–107CrossRefGoogle Scholar
  50. Kwiatkowski L, Cox P, Halloran PR, Mumby PJ, Wiltshire AJ (2015) Coral bleaching under unconventional scenarios of climate warming and ocean acidification. Nat Clim Change 5:771–781CrossRefGoogle Scholar
  51. LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054CrossRefGoogle Scholar
  52. LaJeunesse TC, Smith RT, Finney J, Oxenford H (2009) Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event. Proc R Soc B 276:4139–4148CrossRefGoogle Scholar
  53. LaJeunesse TC, Wham DC, Pettay DT, Parkinson JE, Keshavmurthy S, Chen CA (2014) Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) Clade D are different species. Phycologia 53:305–319CrossRefGoogle Scholar
  54. Leggat W, Seneca F, Wasmund K, Ukani L, Yellowlees D, Ainsworth TD (2011) Differential responses of the coral host and their algal symbiont to thermal stress. PLoS ONE. doi: 10.1371/journal.pone.0026687 Google Scholar
  55. Lesser M (1997) Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16:187–192CrossRefGoogle Scholar
  56. Levas S, Grottoli AG, Warner ME, Cai W-J, Bauer J, Schoepf V, Baumann JH, Matsui Y, Gearing C, Melman TF (2015) Organic carbon fluxes mediated by corals at elevated pCO2 and temperature. Mar Ecol Prog Ser 519:153–164CrossRefGoogle Scholar
  57. Lewis E, Wallace D, Allison LJ (1998) Program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, managed by Lockheed Martin Energy Research Corporation for the US Department of EnergyGoogle Scholar
  58. Lomas MW, Glibert PM (1999) Temperature regulation of nitrate uptake: a novel hypothesis about nitrate uptake and reduction in cool-water diatoms. Limnol Oceanogr 44:556–572CrossRefGoogle Scholar
  59. Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131CrossRefGoogle Scholar
  60. Manzello DP (2015) Rapid recent warming of coral reefs in the Florida Keys. Sci Rep. doi: 10.1038/srep16762 Google Scholar
  61. Marsh J (1970) Primary productivity of reef-building calcareous and red algae. Ecology 55:255–263CrossRefGoogle Scholar
  62. Marubini F, Atkinson MJ (1999) Effects of lowered pH and elevated nitrate on coral calcification. Mar Ecol Prog Ser 188:117–121CrossRefGoogle Scholar
  63. Oakley CA, Schmidt GW, Hopkinson BM (2014) Thermal responses of Symbiodinium photosynthetic carbon assimilation. Coral Reefs 33:501–512CrossRefGoogle Scholar
  64. Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394CrossRefGoogle Scholar
  65. Rands ML, Loughman BC, Douglas AE (1993) The symbiotic interface in an alga invertebrate symbiosis. Proc R Soc Lond B Biol 253:161–165CrossRefGoogle Scholar
  66. Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier-Pages C, Jaubert J, Gattuso JP (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Change Biol 9:1660–1668CrossRefGoogle Scholar
  67. Rodolfo-Metalpa R, Martin S, Ferrier-Pagès C, Gattuso J-P (2010) Response of the temperate coral Cladocora caespitosa to mid-and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD. Biogeosciences 7:289–300CrossRefGoogle Scholar
  68. Rodríguez-Román A, Iglesias-Prieto R (2005) Regulation of photochemical activity in cultured symbiotic dinoflagellates under nitrate limitation and deprivation. Mar Biol 146:1063–1073CrossRefGoogle Scholar
  69. Rosic NN, Pernice M, Dove S, Dunn S, Hoegh-Guldberg O (2011) Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagellates in response to thermal stress: possible implications for coral bleaching. Cell Stress Chaperones 16:69–80CrossRefGoogle Scholar
  70. Schoepf V, Grottoli AG, Warner ME, Cai WJ, Melman TF, Hoadley KD, Pettay DT, Hu X, Li Q, Xu H, Wang Y, Matsui Y, Baumann JH (2013) Coral energy reserves and calcification in a high-CO2 world at two temperatures. PLoS ONE. doi: 10.1371/journal.pone.0075049 Google Scholar
  71. Schoepf V, Stat M, Falter JL, McCulloch MT (2015) Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Sci Rep. doi: 10.1038/srep17639 Google Scholar
  72. Silverstein RN, Cunning R, Baker AC (2015) Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob Change Biol 21:236–249CrossRefGoogle Scholar
  73. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Determination of protein concentration by the bicinchoninic acid method. Anal Biochem 150:76–85CrossRefGoogle Scholar
  74. Smith DJ, Suggett DJ, Baker NR (2005) Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Glob Change Biol 11:1–11CrossRefGoogle Scholar
  75. Smith JE, Hunter CL, Smith CM (2010) The effects of top-down versus bottom-up control on benthic coral reef community structure. Oecologia 163(2):497–507CrossRefGoogle Scholar
  76. Steglich C, Behrenfeld M, Koblizek M, Claustre H, Penno S, Prasil O, Partensky F, Hess WR (2001) Nitrogen deprivation strongly affects Photosystem II but not phycoerythrin level in the divinyl-chlorophyll b-containing cyanobacterium Prochlorococcus marinus. Biochim Biophys Acta 1503:341–349CrossRefGoogle Scholar
  77. Suggett DJ, Oxborough K, Baker NR, MacIntyre HL, Kana TM, Geider RJ (2003) Fast repetition rate and pulse amplitude modulation chlorophyll a fluorescence measurements for assessment of photosynthetic electron transport in marine phytoplankton. Eur J Phycol 38:371–384CrossRefGoogle Scholar
  78. Suggett DJ, Hall-Spencer JM, Rodolfo-Metalpa R, Boatman TG, Payton R, Tye Pettay D, Johnson VR, Warner ME, Lawson T (2012) Sea anemones may thrive in a high CO2 world. Glob Change Biol 18:3015–3025CrossRefGoogle Scholar
  79. Takahashi S, Nakamura T, Sakamizu M, van Woesik R, Yamasaki H (2004) Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol 45:251–255CrossRefGoogle Scholar
  80. Takahashi S, Whitney S, Badger M (2009) Different thermal sensitivity of the repair of photodamaged photosynthetic machinery in cultured Symbiodinium species. Proc Natl Acad Sci USA 106:3237–3242CrossRefGoogle Scholar
  81. Takahashi S, Yoshioka-Nishimura M, Nanba D, Badger MR (2013) Thermal acclimation of the symbiotic alga Symbiodinium spp. alleviates photobleaching under heat stress. Plant Physiol 161:477–485CrossRefGoogle Scholar
  82. Tolosa I, Treignier C, Grover R, Ferrier-Pages C (2011) Impact of feeding and short-term temperature stress on the content and isotopic signature of fatty acids, sterols, and alcohols in the scleractinian coral Turbinaria reniformis. Coral Reefs 30:763–774CrossRefGoogle Scholar
  83. Towanda T, Thuesen EV (2012) Prolonged exposure to elevated CO2 promotes growth of the algal symbiont Symbiodinium muscatinei in the intertidal sea anemone Anthopleura elegantissima. Open Biol 1:615–621CrossRefGoogle Scholar
  84. Ulstrup KE, Berkelmans R, Ralph PJ, van Oppen MJH (2006) Variation in bleaching sensitivity of two coral species across a latitudinal gradient on the Great Barrier Reef: the role of zooxanthellae. Mar Ecol Prog Ser 314:135–148CrossRefGoogle Scholar
  85. Vega Thurber RL, Burkepile DE, Fuchs C, Shantz AA, McMinds R, Zaneveld JR (2014) Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob Change Biol 20:544–554CrossRefGoogle Scholar
  86. Wall CB, Fan TY, Edmunds PJ (2014) Ocean acidification has no effect on thermal bleaching in the coral Seriatopora caliendrum. Coral Reefs 33:119–130CrossRefGoogle Scholar
  87. Warner M, Fitt W, Schmidt G (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012CrossRefGoogle Scholar
  88. Weis VM (1993) Effect of dissolved inorganic carbon concentration on the photosynthesis of the symbiotic sea anemone Aiptasia pulchella Carlgren: role of carbonic anhydrase. J Exp Mar Biol Ecol 174:209–225CrossRefGoogle Scholar
  89. Weis VM, Reynolds WS (1999) Carbonic anhydrase expression and synthesis in the sea anemone Anthopleura elegantissima are enhanced by the presence of dinoflagellate symbionts. Physiol Biochem Zool 72:307–316CrossRefGoogle Scholar
  90. Weis VM, Smith GJ, Muscatine L (1989) A CO2 supply mechanism in zooxanthellate cnidarians—role of carbonic-anhydrase. Mar Biol 100:195–202CrossRefGoogle Scholar
  91. Wiedenmann J, D’Angelo C, Smith EG, Hunt AN, Legiret F-E, Postle AD, Achterberg EP (2013) Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat Clim Change 3:160–164CrossRefGoogle Scholar
  92. Wooldridge SA (2009) A new conceptual model for the warm-water breakdown of the coral-algae endosymbiosis. Mar Freshw Res 60:483–496CrossRefGoogle Scholar
  93. Yellowlees D, Rees TA, Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ 31:679–694CrossRefGoogle Scholar
  94. Ziegler M, Roder CM, Büchel C, Voolstra CR (2014) Limits to physiological plasticity of the coral Pocillopora verrucosa from the central Red Sea. Coral Reefs 33:1115–1129CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Kenneth D. Hoadley
    • 1
  • D. Tye Pettay
    • 1
  • Andréa G. Grottoli
    • 2
  • Wei-Jun Cai
    • 1
    • 3
  • Todd F. Melman
    • 4
  • Stephen Levas
    • 2
    • 8
  • Verena Schoepf
    • 2
    • 7
  • Qian Ding
    • 3
    • 9
  • Xiangchen Yuan
    • 5
  • Yongchen Wang
    • 3
  • Yohei Matsui
    • 2
  • Justin H. Baumann
    • 2
    • 6
  • Mark E. Warner
    • 1
  1. 1.School of Marine Science and PolicyUniversity of DelawareLewesUSA
  2. 2.School of Earth SciencesThe Ohio State UniversityColumbusUSA
  3. 3.Department of Marine SciencesUniversity of GeorgiaAthensUSA
  4. 4.Reef Systems Coral FarmNew AlbanyUSA
  5. 5.Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
  6. 6.Department of Marine SciencesUniversity of North CarolinaChapel HillUSA
  7. 7.ARC Centre of Excellence for Coral Reef Studies, UWA Oceans Institute and School of Earth and EnvironmentUniversity of Western AustraliaCrawleyAustralia
  8. 8.Department of Geography and Environmental ScienceVillanova UniversityVillanovaUSA
  9. 9.Ocean CollegeZhejiang UniversityHangzhouChina

Personalised recommendations