Advertisement

Marine Biology

, 163:119 | Cite as

Neuro-oxidative damage and aerobic potential loss of sharks under elevated CO2 and warming

  • Rui Rosa
  • José Ricardo Paula
  • Eduardo Sampaio
  • Marta Pimentel
  • Ana R. Lopes
  • Miguel Baptista
  • Miguel Guerreiro
  • Catarina Santos
  • Derek Campos
  • Vera M.F. Almeida-Val
  • Ricardo Calado
  • Mário Diniz
  • Tiago Repolho
Original paper

Abstract

Sharks occupy high trophic levels in marine habitats and play a key role in the structure and function of marine communities. Their populations have been declining worldwide by ≥90 %, and their adaptive potential to future ocean conditions is believed to be limiting. Here we experimentally exposed recently hatched bamboo shark (Chiloscyllium punctatum) to the combined effects of tropical ocean warming (+4; 30 °C) and acidification (ΔpH 0.5) and investigated the respiratory, neuronal and antioxidant enzymatic machinery responses. Thirty days post-hatching, juvenile sharks revealed a significant decrease in brain aerobic potential (citrate synthase activity), in opposition to the anaerobic capacity (lactate dehydrogenase). Also, an array of antioxidant enzymes (glutathione S-transferase, superoxide dismutase activity and catalase) acted in concert to detoxify ROS, but this significant upregulation was not enough to minimize the increase in brain’s peroxidative damage and cholinergic neurotransmission. We argue that the future conditions may elicit deleterious deficiencies in sharks’ critical biological processes which, at the long-term, may have detrimental cascading effects at population and ecosystem levels.

Keywords

AChE Activity Ocean Acidification Epaulette Shark Bamboo Shark Juvenile Shark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

INCT-ADAPTA (FAPEAM and CNPQ) supported VMFAV and DC visit to Portugal. The Portuguese Foundation for Science and Technology (FCT) supported this study through Programa Investigador FCT 2013—Development Grant, and Project Grant PTDC/AAG-GLO/1926/2014 to R. Rosa.

Supplementary material

227_2016_2898_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1133 kb)

References

  1. Aebi H (1984) Catalase. In: Packer L (ed) Methods in enzymology. Academic Press, Orlando, pp 121–126Google Scholar
  2. Almeida JR, Gravato C, Guilhermino L (2014) Effects of temperature in juvenile seabass (Dicentrarchus labrax L.) biomarker responses and behaviour: implications for environmental monitoring. Estuar Coasts 38:45–55CrossRefGoogle Scholar
  3. Baum JK, Myers RA, Kehler DG, Worm B, Harley SJ, Doherty PA (2003) Collapse and conservation of shark populations in the Northwest Atlantic. Science 299:389–392CrossRefGoogle Scholar
  4. Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  5. Chapman CA, Harahush BK, Renshaw GMC (2011) The physiological tolerance of the grey carpet shark (Chiloscyllium punctatum) and the epaulette shark (Hemiscyllium ocellatum) to anoxic exposure at three seasonal temperatures. Fish Physiol Biochem 37:387–399CrossRefGoogle Scholar
  6. Checkley DM, Dickson AG, Takahashi M, Radich JA, Eisenkolb N, Asch R (2009) Elevated CO2 enhances otolith growth in young fish. Science 324:1683CrossRefGoogle Scholar
  7. Chin A, Kyne PM, Walker TI, McAuley RB (2010) An integrated risk assessment for climate change: analysing the vulnerability of sharks and rays on Australia’s Great Barrier Reef. Glob Change Biol 16:1936–1953CrossRefGoogle Scholar
  8. Claiborne JB, Evans DH (1992) Acid-base balance and ion transfers in the spiny dogfish (Squalus acanthias) during hypercapnia: a role for ammonia excretion. J Exp Zool 262:9–17CrossRefGoogle Scholar
  9. Compagno LJV (2001) Sharks of the world. An annotated and illustrated catalogue of shark species known to date, vol 2. Bullhead, mackerel and carpet sharks (Heterodontiformes, Lamniformes and Orectolobiformes). FAO Spec. Cat. Fish. Purp. Rome: FAO. 1(2):269Google Scholar
  10. Cornwall CE, Hurd CL (2015) Experimental design in ocean acidification research: problems and solutions. ICES J Mar Sci. doi: 10.1093/icesjms/fsv1118 Google Scholar
  11. Couturier CS, Stecyk JAW, Rummer JL, Munday PL, Nilsson GE (2013) Species-specific effects of near-future CO2 on the respiratory performance of two tropical prey fish and their predator. Comp Biochem Physiol A 166:482–489CrossRefGoogle Scholar
  12. Di Santo V (2015) Ocean acidification exacerbates the impacts of global warming on embryonic little skate, Leucoraja erinacea (Mitchill). J Exp Mar Biol Ecol 463:72–78CrossRefGoogle Scholar
  13. Dickson A, Millero F (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res 34:1733–1743CrossRefGoogle Scholar
  14. Dickson A, Sabine C, Christian J (2007) Guide to best practices for ocean CO2 measurements. PICES Spec Pub 3:191Google Scholar
  15. Dixson DL, Jennings AR, Atema J, Munday PL (2015) Odor tracking in sharks is reduced under future ocean acidification conditions. Glob Change Biol 21:1454–1462CrossRefGoogle Scholar
  16. Donelson JM, Munday PL, McCormick MI, Nilsson GE (2011) Acclimation to predicted ocean warming through developmental plasticity in a tropical reef fish. Glob Change Biol 17:1712–1719CrossRefGoogle Scholar
  17. Driedzic WR, Almeida-Val VMF (1996) Enzymes of cardiac energy metabolism in Amazonian teleosts and the fresh-water stingray (Potamotrygon hystrix). J Exp Zool 274:327–333CrossRefGoogle Scholar
  18. Dulvy NK, Fowler SL, Musick JA, Cavanagh RD, Kyne PM, Harrison LR, Carlson JK, Davidson LNK, Fordham SV, Francis MP, Pollock CM, Simpfendorfer CA, Burgess GH, Carpenter KE, Compagno LJV, Ebert DA, Gibson C, Heupel MR, Livingstone SR, Sanciangco JC, Stevens JD, Valenti S, White WT (2014) Extinction risk and conservation of the world’s sharks and rays. Elife. doi: 10.7554/eLife.00590 Google Scholar
  19. Durieux EH, Farver T, Fitzgerald P, Eder K, Ostrach D (2011) Natural factors to consider when using acetylcholinesterase activity as neurotoxicity biomarker in Young-Of-Year striped bass (Morone saxatilis). Fish Physiol Biochem 37:21–29CrossRefGoogle Scholar
  20. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95CrossRefGoogle Scholar
  21. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432CrossRefGoogle Scholar
  22. Ferretti F, Worm B, Britten GL, Heithaus MR, Lotze HK (2010) Patterns and ecosystem consequences of shark declines in the ocean. Ecol Lett 13:1055–1071Google Scholar
  23. García VB, Lucifora LO, Myers RA (2008) The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras. Proc R Soc B 275:83–89CrossRefGoogle Scholar
  24. Green L, Jutfelt F (2014) Elevated carbon dioxide alters the plasma composition and behaviour of a shark. Biol Lett 10:20140538CrossRefGoogle Scholar
  25. Gutowska MA, Melzner F, Pörtner HO, Meier S (2010) Cuttlebone calcification increases during exposure to elevated seawater pCO2 in the cephalopod Sepia officinalis. Mar Biol 157:1653–1663CrossRefGoogle Scholar
  26. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-Transferases: the first enzymatic in mercapturic acid formation. J Biol Chem 249:7130–7139Google Scholar
  27. Harahush BK, Fischer ABP, Collin SP (2007) Captive breeding and embryonic development of Chiloscyllium punctatum Muller & Henle, 1838 (Elasmobranchii: Hemiscyllidae). J Fish Biol 71:1007–1022CrossRefGoogle Scholar
  28. Heinrich DDU, Rummer JL, Morash AJ, Watson SA, Simpfendorfer CA, Heupel MR, Munday PL (2014) A product of its environment: the epaulette shark (Hemiscyllium ocellatum) exhibits physiological tolerance to elevated environmental CO2. Conserv Physiol. doi: 10.1093/conphys/cou047 Google Scholar
  29. Heinrich DDU, Watson S-A, Rummer JL, Brandl SJ, Simpfendorfer CA, Heupel MR, Munday PL (2015) Foraging behaviour of the epaulette shark Hemiscyllium ocellatum is not affected by elevated CO2. ICES J Mar Sci. doi: 10.1093/icesjms/fsv085 Google Scholar
  30. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 1535Google Scholar
  31. Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434CrossRefGoogle Scholar
  32. Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278CrossRefGoogle Scholar
  33. Lewis E, Wallace DWR (1998) CO2SYS-Program developed for the CO2 system calculations. Carbon Dioxide Inf Anal Center Report ORNL/CDIAC-105Google Scholar
  34. Lucifora LO, Garcia VB, Worm B (2011) Global diversity hotspots and conservation priorities for sharks. PLoS ONE 6:e19356. doi: 10.1371/journal.pone.0019356 CrossRefGoogle Scholar
  35. Luo J-J, Sasaki W, Masumoto Y (2012) Indian Ocean warming modulates Pacific climate change. Proc Natl Acad Sci USA 109:18701–18706CrossRefGoogle Scholar
  36. Magnottl RA, Eberly JP, Quarm DE, McConnell RS (1987) Measurement of acetylcholinesterase in erythrocytes in the field. Clin Chem 33(10):1731–1735Google Scholar
  37. McElhany P, Busch DS (2013) Appropriate pCO2 treatments in ocean acidification experiments. Mar Biol 160:1807–1812CrossRefGoogle Scholar
  38. McNeil BI, Sasse TP (2016) Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle. Nature 529:383–386CrossRefGoogle Scholar
  39. Mehrbach C, Culberson C, Hawley J, Pytkowicz R (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907CrossRefGoogle Scholar
  40. Melo JB, Agostinho P, Oliveira CR (2003) Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide. Neurosci Res 45:117–127CrossRefGoogle Scholar
  41. Melzner F, Gobel S, Langenbuch M, Gutowska MA, Portner HO, Lucassen M (2009) Swimming performance in Atlantic Cod (Gadus morhua) following long-term (4–12 months) acclimation to elevated seawater P(CO2). Aquat Toxicol 92:30–37. doi: 10.1016/j.aquatox.2008.12.011 CrossRefGoogle Scholar
  42. Munday PL, Crawley NE, Nilsson GE (2009) Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes. Mar Ecol Prog Ser 388:235–242CrossRefGoogle Scholar
  43. Nilsson GE, Dixson DL, Domenici P, McCormick MI, Sørensen C, Watson S-A, Munday PL (2012) Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat Clim Change 2:201–204CrossRefGoogle Scholar
  44. Pimentel M, Faleiro F, Dionísio G, Repolho R, Pousão-Ferreira P, Machado J, Rosa R (2014) Defective skeletogenesis and oversized otoliths in fish early stages in a changing ocean. J Exp Biol 217:2062–2070CrossRefGoogle Scholar
  45. Pistevos JCA, Nagelkerken I, Rossi T, Olmos M, Connell SD (2015) Ocean acidification and global warming impair shark hunting behaviour and growth. Sci Rep 5:16293. doi: 10.1038/srep16293 CrossRefGoogle Scholar
  46. Pörtner H (2012) Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes. Mar Ecol Progr Ser 470:273–290CrossRefGoogle Scholar
  47. Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–691CrossRefGoogle Scholar
  48. Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97CrossRefGoogle Scholar
  49. Pörtner H-O, Karl DM, Boyd PW, Cheung WWL, Lluch-Cota SE, Nojiri Y, Schmidt DN, Zavialov PO (2014) Ocean systems. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability part A: global and sectoral aspects contribution of working Group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 411–484Google Scholar
  50. Rosa R, Trueblood L, Seibel BA (2009) Ecophysiological influence on scaling of aerobic and anaerobic metabolism of pelagic gonatid squids. Physiol Biochem Zool 82:419–429CrossRefGoogle Scholar
  51. Rosa R, Baptista M, Lopes VM, Pegado MR, Ricardo Paula J, Trubenbach K, Leal MC, Calado R, Repolho T (2014a) Early-life exposure to climate change impairs tropical shark survival. Proc R Soc B 281:20141738. doi: 10.1098/rspb.2014.1738 CrossRefGoogle Scholar
  52. Rosa R, Lopes A, Pimentel MS, Faleiro F, Baptista M, Trübenbach K, Narciso L, Dionísio G, Pegado MR, Repolho T, Calado R, Diniz M (2014b) Ocean’s cleaning stations under a changing climate: biological responses of tropical and temperate fish-cleaner shrimps to global warming. Glob Change Biol 20:3068–3079CrossRefGoogle Scholar
  53. Rummer JL, Stecyk JAW, Couturier CS, Watson SA, Nilsson GE, Munday PL (2013) Elevated CO2 enhances aerobic scope of a coral reef fish. Conserv Physiol 1:cot023. doi: 10.1093/conphys/cot023 CrossRefGoogle Scholar
  54. Sarazin G, Michard G, Prevot F (1999) A rapid and accurate spectroscopic method for alkalinity measurements in seawater samples. Wat Res 33:290–294CrossRefGoogle Scholar
  55. Strobel A, Leo E, Pörtner H, Mark F (2013) Elevated temperature and PCO2 shift metabolic pathways in differentially oxidative tissues of Notothenia rossii. Comp Biochem Physiol B-Biochem Mol Biol 166:48–57. doi: 10.1016/j.cbpb.2013.06.006 CrossRefGoogle Scholar
  56. Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34:497–500Google Scholar
  57. Sunday JM, Calosi P, Dupont S, Munday PL, Stillman JH, Reusch TBH (2014) Evolution in an acidifying ocean. Trends Ecol Evol 29:117–125CrossRefGoogle Scholar
  58. Szabo TM, Brookings T, Preuss T, Faber DS (2008) Effects of temperature acclimation on a central neural circuit and its behavioral output. J Neurophysiol 100:2997–3008CrossRefGoogle Scholar
  59. Tewksbury JJ, Huey RB, Deutsch CA (2008) Putting the heat on tropical animals. Science 320:1296–1297CrossRefGoogle Scholar
  60. Tullis A, Baillie M (2005) The metabolic and biochemical responses of tropical whitespotted bamboo shark Chiloscyllium plagiosum to alterations in environmental temperature. J Fish Biol 67:950–968CrossRefGoogle Scholar
  61. Uchiyama M, Mihara M (1978) Determination of malon-aldehyde precursor in the tissues by thiobarbituric acid test. Anal Biochem 86:271–278CrossRefGoogle Scholar
  62. Vecchi GA, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76CrossRefGoogle Scholar
  63. Weydert CJ, Cullen JJ (2010) Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nature Prot 5:51–66CrossRefGoogle Scholar
  64. Wood HL, Spicer JI, Widdicombe S (2008) Ocean acidification may increase calcification rates, but at a cost. Proc R Soc Lond B 275:1767–1773CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Rui Rosa
    • 1
  • José Ricardo Paula
    • 1
  • Eduardo Sampaio
    • 1
  • Marta Pimentel
    • 1
  • Ana R. Lopes
    • 1
  • Miguel Baptista
    • 1
  • Miguel Guerreiro
    • 1
  • Catarina Santos
    • 1
  • Derek Campos
    • 2
  • Vera M.F. Almeida-Val
    • 2
  • Ricardo Calado
    • 3
  • Mário Diniz
    • 4
  • Tiago Repolho
    • 1
  1. 1.Laboratório Marítimo da Guia, MARE – Marine and Environmental Sciences CentreFaculdade de Ciências da Universidade de LisboaCascaisPortugal
  2. 2.Laboratory for Ecophysiology and Molecular Evolution (LEEM)National Institute for Amazonian Research (INPA)ManausBrazil
  3. 3.Departamento de Biologia and CESAMUniversidade de AveiroAveiroPortugal
  4. 4.REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations