Marine Biology

, 163:90

Extreme roll angles in Argentine sea bass: Could refuge ease posture and buoyancy control of marine coastal fishes?

  • Javier E. Ciancio
  • Leonardo A. Venerus
  • Gastón A. Trobbiani
  • Lucas E. Beltramino
  • Adrian C. Gleiss
  • Serena Wright
  • Brad Norman
  • Mark Holton
  • Rory P. Wilson
Original paper

Abstract

The swim bladder provides a mechanism for buoyancy regulation in teleosts. However, in certain species, its location can result in an unstable body position, with associated energetic costs assumed for maintaining posture in addition to the energetic demands from swim bladder volume regulation. Direct observations show that some body-compressed, cave-refuging teleosts that nominally operate near neutral buoyancy may adopt unusual body attitudes within crevices. We hypothesize that these fishes may relax their buoyancy and posture control mechanisms during periods of rest. A prediction derived from this is that resting fish may adopt a wide range of roll angles (i.e., rotation about their longitudinal axis) inside caves. To quantify this behavior and for testing this hypothesis, triaxial accelerometers were deployed on free-living, cave-refuging Argentine sea bass Acanthistius patachonicus, and the relationship between roll angle and a proxy for activity (defined as the vectorial dynamic body acceleration, VeDBA) was analyzed. The results were compared with data available for three other species of fishes with disparate body forms and lifestyles: the pelagic whale shark Rhincodon typus, the dorsoventrally compressed benthic great sculpin Myoxocephalus polyacanthocephalus, and the fusiform and demersal Atlantic cod Gadus morhua. Inactive Argentine sea bass adopted a wide variety of roll angles, including extreme ones exceeding 80°, but had lower roll angles closer to an upright posture primarily associated with higher activity levels. In contrast, the great sculpin and Atlantic cod both rested at a close to upright roll angle but had higher activity levels associated with larger roll angles. Whale shark did not rest for the duration of the recorded period and also showed higher activity levels associated with larger roll angles. We propose that relaxation of buoyancy and posture control may help to reduce the metabolic rate in laterally compressed, cave-refuging fishes during periods of rest within crevices.

Supplementary material

227_2016_2869_MOESM1_ESM.docx (10.7 mb)
Supplementary material 1 (DOCX 10951 kb)

References

  1. Alexander RM (1990) Size, speed and buoyancy adaptations in aquatic animals. Am Zool 30:189–196CrossRefGoogle Scholar
  2. Alexander RM (2002) Stability and manoeuvrability of terrestrial vertebrates. ICB 42:158–164Google Scholar
  3. Anderson TW (2001) Predator responses, prey refuges, and density-dependent mortality of a marine fish. Ecology 82:245–257CrossRefGoogle Scholar
  4. Blake RW (1979) The energetics of hovering in the mandarin fish (Synchropus picturatus). J Exp Biol 82:25–33Google Scholar
  5. Broell F, Noda T, Wright S, Domenici P, Steffensen JF, Auclair J-P, Taggart CT (2013) Accelerometer tags: detecting and identifying activities in fish and the effect of sampling frequency. J Exp Biol 216:1255–1264CrossRefGoogle Scholar
  6. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789CrossRefGoogle Scholar
  7. Brownscombe JW, Gutowsky LFG, Danylchuk AJ, Cooke SJ (2014) Foraging behaviour and activity of a marine benthivorous fish estimated using tri-axial accelerometer biologgers. Mar Ecol Progr Ser 505:241–251CrossRefGoogle Scholar
  8. Dellatorre FG, Pisoni JP, Barón PJ, Rivas AL (2012) Tide and wind forced nearshore dynamics in Nuevo Gulf (Northern Patagonia, Argentina): potential implications for cross-shore transport. J Mar Syst 96:82–89CrossRefGoogle Scholar
  9. Eidietis L, Forrester TL, Webb PW (2002) Relative abilities to correct rolling disturbances of three morphologically different fish. Can J Zool 80:2156–2163CrossRefGoogle Scholar
  10. Evans JR, Allen RM, Chung AI, Cochran ES, Guy R, Hellweg M, Lawrence JF (2014) Performance of several low cost accelerometers. Seismol Res Lett 85:147–158CrossRefGoogle Scholar
  11. Galván DE, Parma AM, Iribarne O (2008) Influence of predatory reef fishes on the spatial distribution of Munida gregaria (=M. subrugosa) (Crustacea; Galatheidae) in shallow Patagonian soft bottoms. J Exp Mar Biol Ecol 354:93–100CrossRefGoogle Scholar
  12. Galván DE, Venerus LA, Irigoyen AJ (2009a) The reef-fish fauna of the northern Patagonian gulfs, Argentina, southwestern Atlantic. Open Fish Sci J 2:90–98CrossRefGoogle Scholar
  13. Galván DE, Botto F, Parma AM, Bandieri L, Mohamed N, Iribarne OO (2009b) Food partitioning and spatial subsidy in shelter-limited fishes inhabiting patchy reefs of Patagonia. J Fish Biol 75:2585–2605CrossRefGoogle Scholar
  14. Gannon R, Taylor MD, Suthers IM, Gray CA, van der Meulen DE, Smith JA, Payne NL (2014) Thermal limitation of performance and biogeography in a free-ranging ectotherm: insights from accelerometry. J Exp Biol 217:3033–3037CrossRefGoogle Scholar
  15. Gerstner CL (1998) Use of substratum ripples for flow refuging by Atlantic cod, Gadus morhua. Environ Biol Fishes 51:455–460CrossRefGoogle Scholar
  16. Gleiss AC, Dale JJ, Holland KN, Wilson RP (2010) Accelerating estimates of activity-specific metabolic rate in fishes: testing the applicability of acceleration data-loggers. J Exp Mar Biol Ecol 385:85–91CrossRefGoogle Scholar
  17. Gleiss AC, Wilson RP, Shepard ELC (2011) Making overall dynamic body acceleration work: on the theory of acceleration as a proxy for energy expenditure. Methods Ecol Evol 2:23–33CrossRefGoogle Scholar
  18. Gleiss AC, Wright S, Liebsch N, Wilson RP, Norman B (2013) Contrasting diel patterns in vertical movement and locomotor activity of whale sharks at Ningaloo Reef. Mar Biol 160:2981–2992CrossRefGoogle Scholar
  19. Gleiss AC, Potvin J, Keleher JJ, Whitty JM, Morgan DL, Goldbogen JA (2015) Mechanical challenges to freshwater residency in sharks and rays. J Exp Mar Biol. doi:10.1242/jeb.114868 Google Scholar
  20. Gruber SH, Nelson DR, Morrissey JF (1988) Patterns of activity and space utilization of lemon sharks, Negaprion brevirostris, in a shallow Bahamian lagoon. Bull Mar Sci 43:61–76Google Scholar
  21. Grundy E, Jones MW, Laramee RS, Wilson RP, Shepard ELC (2009) Visualisation of sensor data from animal movement. In: Computer graphics forum. Wiley Online Library, p 815–822Google Scholar
  22. Halsey LG, Shepard ELC, Quintana F, Gomez Laich A, Green JA, Wilson RP (2009) The relationship between oxygen consumption and body acceleration in a range of species. Comp Bioch Physiol Part A Mol Integr Physiol 152:197–202CrossRefGoogle Scholar
  23. Halsey LG, Matthews PGD, Rezende EL, Chauvaud L, Robson AA (2015) The interactions between temperature and activity levels in driving metabolic rate: theory, with empirical validation from contrasting ectotherms. Oecologia 177(4):1117–1129CrossRefGoogle Scholar
  24. Hanson PC, Johnson TB, Schindler DE, Kitchell JF (1997) Fish Bioenergetics 3.0. University of Wisconsin Sea Grant Institute, WISCU-T-97-001, Madison, WisconsinGoogle Scholar
  25. Helfman G, Collette BB, Facey DE, Bowen BW (2009) The diversity of fishes: biology, evolution, and ecology. Wiley, New YorkGoogle Scholar
  26. Hixon MA, Beets JP (1993) Predation, prey refuges, and the structure of coral-reef fish assemblages. Ecol Monogr 63:77–101CrossRefGoogle Scholar
  27. Irigoyen AJ, Venerus LA (2008) The pole-hooking method: a novel and economical technique for in situ tagging small to medium-sized fishes. Fish Res 91:349–353CrossRefGoogle Scholar
  28. Irigoyen A, Cavaleri Gerhardinger L, Carvalho-Filho A (2008) On the status of the species of Acanthistius (Gill, 1862) (Percoidei) in the South-West Atlantic Ocean. Zootaxa 1813:51–59Google Scholar
  29. Irigoyen AJ (2010) Efecto del alga invasora Undaria pinnatifida sobre la comunidad de peces de arrecife en los golfos Norpatagónicos. Ph.D. Thesis, University of ComahueGoogle Scholar
  30. Irigoyen AJ, Galván DE, Venerus LA, Parma AM (2013) Variability in abundance of temperate reef fishes estimated by visual Census. PLoS ONE 8:e61072CrossRefGoogle Scholar
  31. Manly BFJ (1991) Randomization and Monte Carlo Methods in Biology. Chapman and Hall, London, UK, p 281Google Scholar
  32. McCutcheon FH (1966) Pressure sensitivity, reflexes, and buoyancy responses in teleosts. Anim Behav 14:204–217CrossRefGoogle Scholar
  33. Mcnab BK (2002) The physiological ecology of vertebrates: a view from energetics. Cornell University Press, New YorkGoogle Scholar
  34. Mehner T (2012) Diel vertical migration of freshwater fishes–proximate triggers, ultimate causes and research perspectives. Freshw Biol 57:1342–1359CrossRefGoogle Scholar
  35. Perry RI, Smith SJ (1994) Identifying habitat associations of marine fishes using survey data: an application to the Northwest Atlantic. Can J Fish Aquat Sci 51:589–601CrossRefGoogle Scholar
  36. Priede IG (1977) Natural selection for energetic efficiency and the relationship between activity level and mortality. Nature 267:610–611CrossRefGoogle Scholar
  37. Qasem L, Cardew A, Wilson A, Griffiths I, Halsey LG, Shepard ELC, Gleiss AC, Wilson R (2012) Tri-axial dynamic acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector? PLoS ONE 7:e31187CrossRefGoogle Scholar
  38. R Development Core Team (2011) R: a language and environment for statistical computing. In: Computing RFfS (ed), Vienna, AustriaGoogle Scholar
  39. Rubinich JP (2001) Edad y crecimiento del mero Acanthistius brasilianus (Pisces, Serranidae) en el golfo San Matías, Argentina. Universidad Nacional de la Patagonia San Juan Bosco, Puerto MadrynGoogle Scholar
  40. Shasteen SP, Sheehan RJ (1997) Laboratory evaluation of artificial swim bladder deflation in largemouth bass: potential benefits for catch-and-release fisheries. N Am J Fish Manag 17:32–37CrossRefGoogle Scholar
  41. Shepard ELC, Wilson RP, Halsey LG, Quintana F, Laich AG, Gleiss AC, Liebsch N, Myers AE, Norman B (2008a) Derivation of body motion via appropriate smoothing of acceleration data. Aquat Biol 4:235–241CrossRefGoogle Scholar
  42. Shepard ELC, Wilson RP, Quintana F, Laich AG, Liebsch N, Albareda DA, Halsey LG, Gleiss A, Morgan DT, Myers AE (2008b) Identification of animal movement patterns using tri-axial accelerometry. Endang Species Res 10(2):1Google Scholar
  43. Speers-Roesch B, Lingwood D, Stevens ED (2004) Effects of temperature and hydrostatic pressure on routine oxygen uptake of the bloater (Coregonus hoyi). J Gt Lakes Res 30:70–81CrossRefGoogle Scholar
  44. Steele MA (1999) Effects of shelter and predators on reef fishes. J Exp Mar Biol Ecol 233:65–79CrossRefGoogle Scholar
  45. Strand E, Jørgensen C, Huse G (2005) Modelling buoyancy regulation in fishes with swim bladders: bioenergetics and behaviour. Ecol Model 185:309–327CrossRefGoogle Scholar
  46. Venerus LA, Irigoyen AJ, Galván DE, Parma AM (2014) Spatial dynamics of the Argentine sandperch, Pseudopercis semifasciata (Pinguipedidae), in temperate rocky reefs from northern Patagonia, Argentina. Mar Fresh Res 65:39–49Google Scholar
  47. Webb PW (2002) Control of posture, depth, and swimming trajectories of fishes. ICB 42:94–101Google Scholar
  48. Webb PW, Weihs D (1994) Hydrostatic stability of fish with swim bladders: not all fish are unstable. Can J Zool 72:1149–1154CrossRefGoogle Scholar
  49. Webb PW, Weihs D (2015) Stability versus maneuvering challenges for stability during swimming by fishes. Integr Comp Biol. doi:10.1093/icb/icv053 Google Scholar
  50. Williams TM, Wolfe L, Davis T, Kendall T, Richter B, Wang Y, Bryce C, Elkaim GH, Wilmers CC (2014) Instantaneous energetics of puma kills reveal advantage of felid sneak attacks. Science 346:81–85CrossRefGoogle Scholar
  51. Wilson RP, Shepard ELC, Liebsch N (2008) Prying into the intimate details of animal lives: use of a daily diary on animals. Endang Species Res 4:123–137CrossRefGoogle Scholar
  52. Wright S, Metcalfe JD, Wilson R, Hetherington S (2014) Estimating activity-specific energy expenditure in a teleost fish, using accelerometer loggers. Mar Ecol Prog Ser 496:19–32CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Javier E. Ciancio
    • 1
  • Leonardo A. Venerus
    • 2
  • Gastón A. Trobbiani
    • 2
  • Lucas E. Beltramino
    • 3
  • Adrian C. Gleiss
    • 4
  • Serena Wright
    • 5
  • Brad Norman
    • 6
  • Mark Holton
    • 7
  • Rory P. Wilson
    • 8
  1. 1.Instituto de Biología de Organismos Marinos (IBIOMAR–CONICET)Puerto MadrynArgentina
  2. 2.Centro para el Estudio de Sistemas Marinos (CESIMAR–CONICET)Puerto MadrynArgentina
  3. 3.Facultad de Ciencias NaturalesUniversidad Nacional de la Patagonia “San Juan Bosco”Puerto MadrynArgentina
  4. 4.Centre for Fish and Fisheries, Veterinary and Life SciencesMurdoch UniversityMurdochAustralia
  5. 5.Centre for Environment, Fisheries and Aquaculture ScienceLowestoftUK
  6. 6.ECOCEAN Inc. (Aust.), ECOCEAN (USA)PerthAustralia
  7. 7.College of EngineeringSwansea UniversitySwanseaUK
  8. 8.Swansea Lab for Animal Movement, Biosciences, College of ScienceSwansea UniversitySwanseaUK

Personalised recommendations