Marine Biology

, 163:86 | Cite as

On the absence of genetic differentiation between morphotypes of the ballan wrasse Labrus bergylta (Labridae)

  • F. Almada
  • L. Casas
  • S. M. Francisco
  • D. Villegas-Ríos
  • F. Saborido-Rey
  • X. Irigoien
  • J. I. Robalo


The ballan wrasse, Labrus bergylta (Labridae), is a protogynous hermaphrodite fish common in the north-eastern Atlantic from Norway to Morocco. It is a commercially important resource for local fisheries and is currently being used as cleaner fish to control sea lice in salmon farms in northern Europe. Two distinct colour patterns have been recently reported in the literature: plain and spotted. These individuals follow strikingly different life history strategies raising the question of whether they represent one or two independent taxonomic units. Analyses of mitochondrial (18S, COI and control region) and nuclear (S7) markers revealed no genetic differences between these morphotypes. Alternative explanations for the origin and persistence of distinct morphotypes are discussed.


Assortative Mating Salmon Farm Phenotypic Form Clean Fish Magic Trait 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the help of Patricia Carvalho during field work at Madeira and Sérgio Bexiga, Catarina Craveiro, Filipe Tadeu, Ana Patrícia Rafael, Catarina Chaves and Inês Castanheira with DNA sequencing. This study was funded by the Eco-Ethology Research Unit’ Strategic Plan (PEst-OE/MAR/UI0331/2011)—Fundação para a Ciência e a Tecnologia—FCT (partially FEDER funded). F.A. (SFRH/BPD/63170/2009) and S.M.F. (SFRH/BPD/84923/2012) were supported by FCT grants. D.V.R. was supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme (Grant No. 625852).

Supplementary material

227_2016_2860_MOESM1_ESM.pdf (363 kb)
Online Resource 1 Primers and polymerase chain reaction conditions used for Labrus bergylta (PDF 363 kb)


  1. Almada VC, Almada F, Henriques M, Santos RS, Brito A (2002) On the phylogenetic affinities of Centrolabrus trutta and Centrolabrus caeruleus (Perciforms: Labridae). Molecular and meristic evidence. Arquipel Life Mar Sci 19:85–92Google Scholar
  2. Almada VC, Almada F, Francisco SM, Castilho R, Robalo JI (2012) Unexpected high genetic diversity at the extreme Northern geographic limit of Taurulus bubalis (Euphrasen, 1786). PLoS One 7:e44404. doi: 10.1371/journal.pone.0044404 CrossRefGoogle Scholar
  3. Alonso-Fernández A, Alós J, Grau A, Domínguez-Petit R, Saborido Rey F (2011) The use of histological techniques to study the reproductive biology of the hermaphroditic mediterranean fishes Coris julis, Serranus scriba and Diplodus annularis. Mar Coast Fish 3:145–159. doi: 10.1080/19425120.2011.556927 CrossRefGoogle Scholar
  4. Bañon R, Villegas-Ríos D, Serrano A, Mucientes G, Arronte JC (2010) Marine fishes from Galicia (NW Spain): an updated checklist. Zootaxa 2667:1–27Google Scholar
  5. Barreto FS, McCartney MA (2008) Extraordinary AFLP fingerprint similarity despite strong assortative mating between reef fish color morphospecies. Evolution 62:1–8. doi: 10.1111/j.1558-5646.2007.00285.x Google Scholar
  6. Choat JH, Klanten OS, Van Herwerden L, Robertson DR, Clements KD (2012) Patterns and processes in the evolutionary history of parrotfishes (Family Labridae). Biol J Linn Soc 107:529–557CrossRefGoogle Scholar
  7. Chow S, Hazama K (1998) Universal PCR primers for S7 ribosomal protein genes in fish. Mol Ecol 7:1255–1256. doi: 10.1046/j.1365-294x.1998.00406.x Google Scholar
  8. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660. doi: 10.1046/j.1365-294x.2000.01020.x CrossRefGoogle Scholar
  9. Coulson PG, Hesp SA, Hall NG, Potter IC (2009) The western blue groper (Achoerodus gouldii), a protogynous hermaphroditic labrid with exceptional longevity, late maturity, slow growth, and both late maturation and sex change. Fish Bull 107:57–75Google Scholar
  10. D’Arcy J, Mirimin L, FitzGerald R (2013) Phylogeographic structure of a protogynous hermaphrodite species, the ballan wrasse Labrus bergylta, in Ireland, Scotland, and Norway, using mitochondrial DNA sequence data. ICES J Mar Sci. doi: 10.1093/icesjms/fst018 Google Scholar
  11. Dipper FA, Pullin RSV (1979) Gonochorism and sex-inversion in British Labridae (Pisces). J Zool 187:97–112. doi: 10.1111/j.1469-7998.1979.tb07716.x CrossRefGoogle Scholar
  12. Domingues VS, Faria C, Stefanni S, Santos RS, Brito A, Almada VC (2007a) Genetic divergence in the Atlantic-Mediterranean Montagu’s blenny, Coryphoblennius galerita (Linnaeus 1758) revealed by molecular and morphological characters. Mol Ecol 16:3592–3605. doi: 10.1111/j.1365-294X.2007.03405.x CrossRefGoogle Scholar
  13. Domingues VS, Santos RS, Brito A, Alexandrou M, Almada VC (2007b) Mitochondrial and nuclear markers reveal isolation by distance and effects of Pleistocene glaciations in the northeastern Atlantic and Mediterranean populations of the white seabream (Diplodus sargus, L.). J Exp Mar Biol Ecol 346:102–113. doi: 10.1016/j.jembe.2007.03.002 CrossRefGoogle Scholar
  14. Elmer KR, Lehtonen TK, Meyer A (2009) Color assortative mating contributes to sympatric divergence of neotropical cichlid fish. Evolution 63:2750–2757. doi: 10.1111/j.1558-5646.2009.00736.x CrossRefGoogle Scholar
  15. Elwood HJ, Olsen GJ, Sogin ML (1985) The small-subunit ribosomal RNA gene sequences from the hypotrichous ciliates Oxytricha nova and Stylonychia pustulata. Mol Biol Evol 2:399–410Google Scholar
  16. Excoffier L, Lischer H (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x CrossRefGoogle Scholar
  17. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299Google Scholar
  18. Francisco SM, Faria C, Lengkeek W, Vieira MN, Velasco EM, Almada VC (2011) Phylogeography of the shanny Lipophrys pholis (Pisces: Blenniidae) in the NE Atlantic records signs of major expansion event older than the last glaciation. J Exp Mar Biol Ecol 403:14–20. doi: 10.1016/j.jembe.2011.03.020 CrossRefGoogle Scholar
  19. Froese R, Pauly D (2015) FishBase World Wide Web electronic publication. Accessed 15 Apr 2015
  20. Gavrilets S (2004) Fitness landscapes and the origin of species (MPB-41). Princeton University Press, PrincetonGoogle Scholar
  21. Hanel R, Westneat MW, Sturmbauer C (2002) Phylogenetic relationships, evolution of broodcare behavior, and geographic speciation in the wrasse tribe Labrini. J Mol Evol 55:776–789. doi: 10.1007/s00239-002-2373-6 CrossRefGoogle Scholar
  22. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi: 10.1093/bioinformatics/btm404 CrossRefGoogle Scholar
  23. Maan ME, Sefc KM (2013) Colour variation in cichlid fish: developmental mechanisms, selective pressures and evolutionary consequences. Sem Cell Dev Biol 24:516–528. doi: 10.1016/j.semcdb.2013.05.003 CrossRefGoogle Scholar
  24. Moon-van der Staay SY, Van Der Staay GWM, Guillou L, Claustre H, Medlin LH, Vaulot D (2000) Abundance and diversity of Prymnesiophyceae in the picoplankton community from the equatorial Pacific Ocean inferred from 18S rDNA sequences. Limnol Oceanogr 45:98–109. doi: 10.4319/lo.2000.45.1.0098 CrossRefGoogle Scholar
  25. Muncaster S, Andersson E, Kjesbu OS, Taranger GL, Skiftesvik AB, Norberg B (2010) The reproductive cycle of female Ballan wrasse Labrus bergylta in high latitude, temperate waters. J Fish Biol 77:494–511. doi: 10.1111/j.1095-8649.2010.02691.x Google Scholar
  26. Ostellari L, Bargelloni L, Penzo E, Patarnello P, Patarnello T (1996) Optimization of single-strand conformation polymorphism and sequence analysis of the mitochondrial control region in Pagellus bogaraveo (Sparidae, Teleostei): rationalized tools in fish population biology. Anim Genet 27:423–427. doi: 10.1111/j.1365-2052.1996.tb00510.x CrossRefGoogle Scholar
  27. Puebla O (2009) Ecological speciation in marine v. freshwater fishes. J Fish Biol 75:960–996. doi: 10.1111/j.1095-8649.2009.02358.x CrossRefGoogle Scholar
  28. Puebla O, Bermingham E, Guichard F, Whiteman E (2007) Colour pattern as a single trait driving speciation in Hypoplectrus coral reef fishes? Proc R Soc Lond Biol 274:1265–1271. doi: 10.1098/rspb.2006.0435 CrossRefGoogle Scholar
  29. Quignard JP, Pras A (1986) Labridae. In: Whitehead PJP, Bauchot M-L, Hureau J-C, Nielsen J, Tortonese E (eds) The fishes of the Northeastern Atlantic and the Mediterranean II. UNESCO, ParisGoogle Scholar
  30. Quintela M, Danielsen EA, Svåsand T, Knutsen H, Skiftesvik AB, Glover KA (2014) Isolation and characterization of twenty microsatellite loci for the ballan wrasse, Labrus bergylta. Conserv Genet Resour 6:425–428. doi: 10.1007/s12686-013-0114-3 CrossRefGoogle Scholar
  31. Robalo JI, Castilho R, Francisco SM, Almada F, Knutsen H, Jorde PE, Pereira AM, Almada VC (2011) Northern refugia and recent expansion in the North Sea: the case of the wrasse Symphodus melops (Linnaeus, 1758). Ecol Evol 2:153–164. doi: 10.1002/ece3.77 CrossRefGoogle Scholar
  32. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  33. Sefc KM, Brown AC, Clotfelter ED (2014) Carotenoid-based coloration in cichlid fishes. Comp Biochem Physiol A 173:42–51. doi: 10.1016/j.cbpa.2014.03.006 CrossRefGoogle Scholar
  34. Sherwood GD, Grabowski JH (2010) Exploring the life-history implications of colour variation in offshore Gulf of Maine cod (Gadus morhua). ICES J Mar Sci 67:1640–1649. doi: 10.1093/icesjms/fsq094 CrossRefGoogle Scholar
  35. Skiftesvik AB, Bjelland RM, Durif CM, Johansen IS, Browman HI (2013) Delousing of Atlantic salmon (Salmo salar) by cultured vs. wild ballan wrasse (Labrus bergylta). Aquaculture 402:113–118. doi: 10.1016/j.aquaculture.2013.03.032 CrossRefGoogle Scholar
  36. Talbot C, Medeiros MV, Davie A (2012) In vivo gender determination in captive ballan wrasse (Labrus bergylta Ascanius 1767). Final report to the Scottish Salmon Producers Organisation 54Google Scholar
  37. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633Google Scholar
  38. Treasurer J (1994) Prey selection and daily food consumption by a cleaner fish, Ctenolabrus rupestris (L.), on farmed Atlantic salmon, Salmo salar L. Aquaculture 122:269–277. doi: 10.1016/0044-8486(94)90337-9 CrossRefGoogle Scholar
  39. Villegas-Ríos D (2013) Life-history and behaviour of Labrus bergylta in Galicia. PhD thesis, University of Vigo, SpainGoogle Scholar
  40. Villegas-Ríos D, Alonso-Fernández A, Domínguez-Petit R, Saborido-Rey F (2013a) Intraspecific variability in reproductive patterns in the temperate hermaphrodite Labrus bergylta. Mar Freshw Res 64:1156–1168. doi: 10.1071/MF12362 CrossRefGoogle Scholar
  41. Villegas-Ríos D, Alonso-Fernández A, Fabeiro M, Bañón R, Saborido-Rey F (2013b) Demographic variation between colour patterns in a temperate protogynous hermaphrodite, the ballan wrasse Labrus bergylta. PLoS One 8(8):e71591. doi: 10.1371/journal.pone.0071591 CrossRefGoogle Scholar
  42. Villegas-Ríos D, Alonso-Fernández A, Domínguez-Petit R, Saborido-Rey F (2014) Energy allocation and reproductive investment in a temperate protogynous hermaphrodite, the ballan wrasse Labrus bergylta. J Sea Res 86:76–85. doi: 10.1016/j.seares.2013.11.010 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • F. Almada
    • 1
  • L. Casas
    • 2
  • S. M. Francisco
    • 1
  • D. Villegas-Ríos
    • 3
  • F. Saborido-Rey
    • 4
  • X. Irigoien
    • 2
  • J. I. Robalo
    • 1
  1. 1.MARE – Marine and Environmental Sciences CentreISPA Instituto UniversitárioLisbonPortugal
  2. 2.Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
  3. 3.Institute of Marine Research (IMR)HisNorway
  4. 4.Institute of Marine Research (IIM-CSIC)VigoSpain

Personalised recommendations