Advertisement

Marine Biology

, 163:60 | Cite as

Deficit in digestive capabilities of bamboo shark early stages under climate change

  • Rui RosaEmail author
  • Marta Pimentel
  • Juan G. Galan
  • Miguel Baptista
  • Vanessa M. Lopes
  • Ana Couto
  • Miguel Guerreiro
  • Eduardo Sampaio
  • Joana Castro
  • Catarina Santos
  • Ricardo Calado
  • Tiago Repolho
SHORT NOTES

Abstract

Little empirical information is currently available on the potential effects of acidification and/or warming in sharks, but none exist about digestive capabilities under such future conditions. Here, we investigated the impact of both acidification (ΔpH = 0.5) and warming (+4; 30 °C) on the digestive enzyme levels of recently hatched tropical bamboo shark (Chiloscyllium punctatum). Thirty days post-hatching, juvenile sharks revealed a significant increase in pancreatic trypsin levels under warming, but also a significant decrease under acidification, namely a 42 % drop under present-day temperature and 44 % drop under the warming condition. A similar trend was recorded for the alkaline phosphatase activity in shark’s intestine, i.e. the impact of environmental hypercapnia was also quite notorious—a 50 % drop under present-day temperature and 49 % drop under the warming condition. Thus, our present findings suggest that acidification and warming acted antagonistically, leading to similar enzyme activities under present and future conditions. Future directions on this topic of research should point towards the study of other types of sharks, namely pelagic ones with quite higher energetic demands.

Keywords

Ocean Acidification Brush Border Enzyme High Energetic Demand Epaulette Shark Bamboo Shark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The Portuguese Foundation for Science and Technology (FCT) supported this study through Programa Investigador FCT 2013—Development Grant, and project grant PTDC/AAG-GLO/1926/2014 to R. Rosa.

Supplementary material

227_2016_2840_MOESM1_ESM.pdf (636 kb)
Supplementary material 1 (PDF 636 kb)

References

  1. Batista I, Pires C (2002) Comparative studies of the proteolytic activity of crude extracts from the digestive tract of three shark species. J Aquat Food Prod Tech 11:151–165CrossRefGoogle Scholar
  2. Bechmann RK, Taban IC, Westerlund S, Godal BF, Arnberg M, Vingen S, Ingvarsdottir A, Baussant T (2011) Effects of ocean acidification on early life stages of shrimp (Pandalus borealis) and mussel (Mytilus edulis). J Toxicol Health A 74:424–438CrossRefGoogle Scholar
  3. Bessey OA, Lowry OH, Brock MJ (1946) A method for the rapid determination of alkaline phosphatase with 5 cubic millimeters of serum. J Biol Chem 164:321–329Google Scholar
  4. Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  5. Chapman CA, Harahush BK, Renshaw GMC (2011) The physiological tolerance of the grey carpet shark (Chiloscyllium punctatum) and the epaulette shark (Hemiscyllium ocellatum) to anoxic exposure at three seasonal temperatures. Fish Physiol Biochem 37:387–399CrossRefGoogle Scholar
  6. Compagno LJV (2001) Sharks of the world. An annotated and illustrated catalogue of shark species known to date. Vol 2. Bullhead, mackerel and carpet sharks (Heterodontiformes, Lamniformes and Orectolobiformes). FAO species catalogue for fishery purposes, no 1, vol 2, p 269Google Scholar
  7. Crane RK, Boge G, Rigal A (1979) Isolation of brush-border membranes in vesicular form from the intestinal spiral valve of the small dogfish (Scyliorhinus canicula). Biochim Biophys Acta 554:264–267CrossRefGoogle Scholar
  8. Dickson A, Millero F (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res 34:1733–1743CrossRefGoogle Scholar
  9. Dickson A, Sabine C, Christian J (2007) Guide to best practices for ocean CO2 measurements. PICES Spec Pub 3:191Google Scholar
  10. Dixson DL, Jennings AR, Atema J, Munday PL (2015) Odor tracking in sharks is reduced under future ocean acidification conditions. Global Change Biol 21:1454–1462CrossRefGoogle Scholar
  11. Dulvy NK, Fowler SL, Musick JA, Cavanagh RD, Kyne PM, Harrison LR, Carlson JK, Davidson LNK, Fordham SV, Francis MP, Pollock CM, Simpfendorfer CA, Burgess GH, Carpenter KE, Compagno LJV, Ebert DA, Gibson C, Heupel MR, Livingstone SR, Sanciangco JC, Stevens JD, Valenti S, White WT (2014) Extinction risk and conservation of the world’s sharks and rays. Elife. doi: 10.7554/eLife.00590 Google Scholar
  12. Ferretti F, Worm B, Britten GL, Heithaus MR, Lotze HK (2010) Patterns and ecosystem consequences of shark declines in the ocean. Ecol Lett 13:1055–1071Google Scholar
  13. Frommel AY, Maneja R, Lowe D, Malzahn A, Geffen A, Folkvord A, Piatkowski U, Reusch TBH, Clemmesen C (2012) Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nat Clim Change 2:42–46CrossRefGoogle Scholar
  14. Frommel A, Maneja R, Lowe D, Pascoe C, Geffen A, Folkvord A, Piatkowski U, Clemmensen C (2014) Organ damage in Atlantic herring larvae as a result of ocean acidification. Ecol Appl 24:1131–1143CrossRefGoogle Scholar
  15. Green L, Jutfelt F (2014) Elevated carbon dioxide alters the plasma composition and behaviour of a shark. Biol Lett 10:20140538CrossRefGoogle Scholar
  16. Hausamen TU, Helger R, Rick W, Gross W (1967) Optimal conditions for determination of serum alkaline phosphatase by a new kinetic method. Clin Chim Acta 15:241–245CrossRefGoogle Scholar
  17. Heinrich DDU, Rummer JL, Morash AJ, Watson SA, Simpfendorfer CA, Heupel MR, Munday PL (2014) A product of its environment: the epaulette shark (Hemiscyllium ocellatum) exhibits physiological tolerance to elevated environmental CO2. Conserv Physiol. doi: 10.1093/conphys/cou047 Google Scholar
  18. Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanisms and process in physiological evolution. Oxford University Press, OxfordGoogle Scholar
  19. Holm H, Hanssen LE, Krogdahl A, Florholmen J (1988) High and low inhibitor soybean meals affect human duodenal proteinase activity differently: in vivo comparison with bovine serum albumin. J Nutr 118:515–520Google Scholar
  20. Lewis E, Wallace DWR (1998) CO2SYS-program developed for the CO2 system calculations. In: Carbon dioxide information analysis center report ORNL/CDIAC-105Google Scholar
  21. Lucifora LO, Garcia VB, Worm B (2011) Global diversity hotspots and conservation priorities for sharks. PLoS One 6:e19356. doi: 10.1371/journal.pone.0019356 CrossRefGoogle Scholar
  22. Luo J-J, Sasaki W, Masumoto Y (2012) Indian Ocean warming modulates Pacific climate change. Proc Nat Acad Sci USA 109:18701–18706CrossRefGoogle Scholar
  23. McElhany P, Busch DS (2013) Appropriate pCO2 treatments in ocean acidification experiments. Mar Biol 160:1807–1812CrossRefGoogle Scholar
  24. Mehrbach C, Culberson C, Hawley J, Pytkowicz R (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907CrossRefGoogle Scholar
  25. Papastamatiou YP, Lowe CG (2005) Variations in gastric acid secretion during periods of fasting between two species of shark. Comp Biochemi Physiol A 141:210–214CrossRefGoogle Scholar
  26. Papastamatiou Y, Purkis S, Holland K (2007) The response of gastric pH and motility to fasting and feeding in free-swimming blacktip reef sharks, Carcharhinus melanopterus. J Exp Mar Biol Ecol 345:129–140CrossRefGoogle Scholar
  27. Pörtner H-O, Karl DM, Boyd PW, Cheung WWL, Lluch-Cota SE, Nojiri Y, Schmidt DN, Zavialov PO (2014) Ocean systems. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability part A: global and sectoral aspects contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 411–484Google Scholar
  28. Rosa R, Baptista M, Lopes VM, Pegado MR, Ricardo Paula J, Trubenbach K, Leal MC, Calado R, Repolho T (2014) Early-life exposure to climate change impairs tropical shark survival. Proc R Soc B Biol Sci 281:20141738. doi: 10.1098/rspb.2014.1738 CrossRefGoogle Scholar
  29. Sarazin G, Michard G, Prevot F (1999) A rapid and accurate spectroscopic method for alkalinity measurements in seawater samples. Wat Res 33:290–294CrossRefGoogle Scholar
  30. Stumpp M, Hu M, Casties I, Saborowski R, Bleich M, Melzner F, Dupont S (2013) Digestion in sea urchin larvae impaired under ocean acidification. Nat Clim Change 3:1044–1049CrossRefGoogle Scholar
  31. Tullis A, Baillie M (2005) The metabolic and biochemical responses of tropical whitespotted bamboo shark Chiloscyllium plagiosum to alterations in environmental temperature. J Fish Biol 67:950–968CrossRefGoogle Scholar
  32. Vecchi GA, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76CrossRefGoogle Scholar
  33. Wetherbee BM, Gruber SH (1993) The effects of ration level on food retention time in juvenile lemon sharks Negaprion brevirostris. Environ Biol Fish 29:59–65CrossRefGoogle Scholar
  34. Wetherbee BM, Gruber SH, Ramsey AL (1987) X-radiographic observations of food passage through the digestive tracts of lemon sharks. Trans Am Fish Soc 116:763–767CrossRefGoogle Scholar
  35. Zambonino Infante JL, Gisbert E, Sarasquete C, Navarro I, Gutiérrez J, Cahu CL (2008) Ontogeny and physiology of the digestive system of marine fish larvae. In: Cyrino JEP, Bureau DP, Kapoor BG (eds) Feeding and digestive functions of fishes. CRC Press, Boca Raton, pp 281–348CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Rui Rosa
    • 1
    Email author
  • Marta Pimentel
    • 1
  • Juan G. Galan
    • 1
  • Miguel Baptista
    • 1
  • Vanessa M. Lopes
    • 1
  • Ana Couto
    • 1
  • Miguel Guerreiro
    • 1
  • Eduardo Sampaio
    • 1
  • Joana Castro
    • 1
  • Catarina Santos
    • 1
  • Ricardo Calado
    • 2
  • Tiago Repolho
    • 1
  1. 1.MARE – Marine and Environmental Sciences Centre, Laboratório Marítimo da GuiaFaculdade de Ciências da Universidade de LisboaCascaisPortugal
  2. 2.Departamento de Biologia and CESAMUniversidade de AveiroAveiroPortugal

Personalised recommendations