Marine Biology

, 163:14 | Cite as

Genotypic variation influences tolerance to warming and acidification of early life-stage Fucus vesiculosus L. (Phaeophyceae) in a seasonally fluctuating environment

  • Balsam Al-Janabi
  • Inken Kruse
  • Angelika Graiff
  • Ulf Karsten
  • Martin Wahl
Original paper

Abstract

Global change exposes brown algal Fucus vesiculosus populations to increasing temperature and pCO2, which may threaten individuals, in particular the early life-stages. Genetic diversity of F. vesiculosus populations is low in the Baltic compared to Atlantic populations. This might jeopardise their potential for adaptation to environmental changes. Here, we report on the responses of early life-stage F. vesiculosus to warming and acidification in a near-natural scenario maintaining natural and seasonal variation (spring 2013–2014) of the Kiel Fjord in the Baltic Sea, Germany (54°27ʹN, 10°11ʹW). We assessed how stress sensitivity differed among sibling groups and how genetic diversity of germling populations affected their stress tolerance. Warming increased growth rates of Fucus germlings in spring and in early summer, but led to higher photoinhibition in spring and decreased their survival in late summer. Acidification increased germlings’ growth in summer but otherwise showed much weaker effects than warming. During the colder seasons (autumn and winter), growth was slow while survival was high compared to spring and summer, all at ambient temperatures. A pronounced variation in stress response among genetically different sibling groups (full-sib families) suggests a genotypic basis for this variation and thus a potential for adaptation for F. vesiculosus populations to future conditions. Corroborating this, survival in response to warming in populations with higher diversity was better than the mean survival of single sibling groups. We conclude that impacts on early life-stages depend on the combination of stressors and season and that genetic variation is crucial for the tolerance to global change stress.

Supplementary material

227_2015_2804_MOESM1_ESM.pdf (134 kb)
Supplementary material 1 (PDF 134 kb)
227_2015_2804_MOESM2_ESM.pdf (144 kb)
Supplementary material 2 (PDF 143 kb)
227_2015_2804_MOESM3_ESM.pdf (123 kb)
Supplementary material 3 (PDF 122 kb)

References

  1. Aguirre JD, Marshall DJ (2012) Does genetic diversity reduce sibling competition? Evolution 66:94–102. doi:10.1111/j.1558-5646.2011.01413.x CrossRefGoogle Scholar
  2. Allakhverdiev S, Kreslavski V, Klimov V, Los D, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550. doi:10.1007/s11120-008-9331-0 CrossRefGoogle Scholar
  3. Beardall J, Giordano M (2002) Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms, and their regulation. Funct Plant Biol 29:335–347. doi:10.1071/PP01195 CrossRefGoogle Scholar
  4. Berger R, Bergström L, Granéli E, Kautsky L (2004) How does eutrophication affect different life stages of Fucus vesiculosus in the Baltic Sea?—a conceptual model. Hydrobiologia 514:243–248. doi:10.1023/B:hydr.0000018222.44511.b7 CrossRefGoogle Scholar
  5. Bertness MD, Leonard GH (1997) The role of positive interactions in communities: lessons from intertidal habitats. Ecology 78:1976–1989CrossRefGoogle Scholar
  6. Bonsdorff E (2006) Zoobenthic diversity-gradients in the Baltic Sea: continuous post-glacial succession in a stressed ecosystem. J Exp Mar Biol Ecol 330:383–391CrossRefGoogle Scholar
  7. Caruso CM, Maherali H, Mikulyuk A, Carlson K, Jackson RB (2005) Genetic variance and covariance for physiological traits in Lobelia: are there constraints on adaptive evolution? Evolution 59:826–837Google Scholar
  8. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. doi:10.1111/j.1442-9993.1993.tb00438.x CrossRefGoogle Scholar
  9. Coelho S, Rijstenbil J, Brown M (2000) Impacts of anthropogenic stresses on the early development stages of seaweeds. J Aquat Ecosyst Stress Recovery 7:317–333. doi:10.1023/A:1009916129009 CrossRefGoogle Scholar
  10. da Gama BAP, Plouguerné E, Pereira RC (2014) Chapter fourteen—The antifouling defence mechanisms of marine macroalgae. In: Nathalie B (ed) Adv Bot Res. Academic Press, Cambridge, pp 413–440Google Scholar
  11. Ehlers A, Worm B, Reusch TBH (2008) Importance of genetic diversity in eelgrass Zostera marina for its resilience to global warming. Mar Ecol Prog Ser 355:1–7. doi:10.3354/meps07369 CrossRefGoogle Scholar
  12. Elken J, Lehmann A, Myrberg K (2015) Recent change—marine circulation and stratification. In: The BACC II Author Team (eds) Second assessment of climate change for the Baltic Sea basin. Springer, pp 131–144Google Scholar
  13. Eriksson BK, Johansson G, Snoeijs P (1998) Long-term changes in the sublittoral zonation of brown algae in the southern Bothnian Sea. Eur J Phycol 33:241–249. doi:10.1080/09670269810001736743 CrossRefGoogle Scholar
  14. Folt CL, Chen CY, Moore MV, Burnaford J (1999) Synergism and antagonism among multiple stressors. Limnol Oceanogr 44:864–877. doi:10.4319/lo.1999.44.3_part_2.0864 CrossRefGoogle Scholar
  15. Forster RM, Dring MJ (1992) Interactions of blue light and inorganic carbon supply in the control of light-saturated photosynthesis in brown algae. Plant Cell Environ 15:241–247. doi:10.1111/j.1365-3040.1992.tb01478.x CrossRefGoogle Scholar
  16. Frankham R (2003) Genetics and conservation biology. CR Biol 326(S1):22–29. doi:10.1016/S1631-0691(03)00023-4 CrossRefGoogle Scholar
  17. Frankham R (2010) Challenges and opportunities of genetic approaches to biological conservation. Biol Conserv 143:1919–1927. doi:10.1016/j.biocon.2010.05.011 CrossRefGoogle Scholar
  18. Frankham R, Ballou JD, Bricoe DA (2009) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  19. Gamfeldt L, Wallén J, Jonsson PR, Berntsson KM, Havenhand JN (2005) Increasing intraspecific diversity enhances settling success in a marine invertebrate. Ecology 86:3219–3224. doi:10.1890/05-0377 CrossRefGoogle Scholar
  20. Gordillo FJL, Niell FX, Figueroa FL (2001) Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213:64–70. doi:10.1007/s004250000468 CrossRefGoogle Scholar
  21. Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Funct Plant Biol 22:131–160. doi:10.1071/PP9950131 Google Scholar
  22. Graham LP, Chen D, Christensen OB, Kjellström E, Krysanova V, Meier HEM, Radziejewski M, Räisänen J, Rockel B, Ruosteenoja K (2008) Projections of future anthropogenic climate change. In: The Baltic Sea Author Team (eds) Assessment of climate change for the Baltic Sea basinGoogle Scholar
  23. Graiff A, Liesner D, Karsten U, Bartsch I (2015) Temperature tolerance of western Baltic Sea Fucus vesiculosus—growth, photosynthesis and survival. J Exp Mar Biol Ecol 471:8–16. doi:10.1016/j.jembe.2015.05.009 CrossRefGoogle Scholar
  24. Hanelt D (1998) Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar Biol 131:361–369. doi:10.1007/s002270050329 CrossRefGoogle Scholar
  25. Harvey B, Al-Janabi B, Broszeit S et al (2014) Evolution of marine organisms under climate change at different levels of biological organisation. Water 6:3545–3574CrossRefGoogle Scholar
  26. Hoffmann AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485CrossRefGoogle Scholar
  27. Honkanen T, Jormalainen V (2005) Genotypic variation in tolerance and resistance to fouling in the brown alga Fucus vesiculosus. Oecologia 144:196–205. doi:10.1007/s00442-005-0053-0 CrossRefGoogle Scholar
  28. Hooper DU, Chapin FS, Ewel JJ, Hector A et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35. doi:10.1890/04-0922 CrossRefGoogle Scholar
  29. Hughes AR, Stachowicz JJ (2004) Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc Natl Acad Sci USA 101:8998–9002. doi:10.1073/pnas.0402642101 CrossRefGoogle Scholar
  30. IPCC (2013) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate Change. Cambridge University Press, CambridgeGoogle Scholar
  31. Johannesson K, André C (2006) Life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. Mol Ecol 15:2013–2029. doi:10.1111/j.1365-294X.2006.02919.x CrossRefGoogle Scholar
  32. Johannesson K, Johansson D, Larsson KH et al (2011) Frequent clonality in fucoids (Fucus radicans and Fucus vesiculosus; Fucales, Phaeophyceae) in the Baltic Sea. J Phycol 47:990–998. doi:10.1111/j.1529-8817.2011.01032.x CrossRefGoogle Scholar
  33. Johnson VR, Russell BD, Fabricius KE, Brownlee C, Hall-Spencer JM (2012) Temperate and tropical brown macroalgae thrive, despite decalcification, along natural CO2 gradients. Global Change Biol 18:2792–2803. doi:10.1111/j.1365-2486.2012.02716.x CrossRefGoogle Scholar
  34. Jueterbock A, Tyberghein L, Verbruggen H, Coyer JA, Olsen JL, Hoarau G (2013) Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecol Evol 3:1356–1373. doi:10.1002/ece3.541 CrossRefGoogle Scholar
  35. Klenell M, Snoeijs P, Pedersén M (2004) Active carbon uptake in Laminaria digitata and L. saccharina (Phaeophyta) is driven by a proton pump in the plasma membrane. Hydrobiologia 514:41–53. doi:10.1023/B:hydr.0000018205.80186.3e CrossRefGoogle Scholar
  36. Koch M, Bowes G, Ross C, Zhang X-H (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biol 19:103–132. doi:10.1111/j.1365-2486.2012.02791.x CrossRefGoogle Scholar
  37. Lamote M, Johnson L (2008) Temporal and spatial variation in the early recruitment of fucoid algae: the role of microhabitats and temporal scales. Mar Ecol Prog Ser 368:93–102. doi:10.3354/meps07592 CrossRefGoogle Scholar
  38. Lavaud J, Rousseau B, Etienne AL (2002a) In diatoms, a transthylakoid proton gradient alone is not sufficient to induce a non-photochemical fluorescence quenching. FEBS Lett 523:163–166CrossRefGoogle Scholar
  39. Lavaud J, Rousseau B, van Gorkom HJ, Etienne AL (2002b) Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Plant Physiol 129:1398–1406. doi:10.1104/pp.002014 CrossRefGoogle Scholar
  40. Lehvo A, Bäck S, Kiirikki M (2001) Growth of Fucus vesiculosus L (Phaeophyta) in the northern Baltic proper: energy and nitrogen storage in seasonal environment. Bot Mar 44:345–350CrossRefGoogle Scholar
  41. Li R, Brawley SH (2004) Improved survival under heat stress in intertidal embryos (Fucus spp.) simultaneously exposed to hypersalinity and the effect of parental thermal history. Mar Biol 144:205–213. doi:10.1007/s00227-003-1190-9 CrossRefGoogle Scholar
  42. Lotze HK, Worm B, Sommer U (2001) Strong bottom-up and top-down control of early life stages of macroalgae. Limnol Oceanogr 46:749–757. doi:10.4319/lo.2001.46.4.0749 CrossRefGoogle Scholar
  43. Maczassek K (2014) Environmental drivers of fertility, fertilization and germination of Fucus vesiculosus on the German coast. Dissertation. University of KielGoogle Scholar
  44. Nicastro K, Zardi G, Teixeira S, Neiva J, Serrão E, Pearson G (2013) Shift happens: trailing edge contraction associated with recent warming trends threatens a distinct genetic lineage in the marine macroalga Fucus vesiculosus. BMC Biol 11:1–13. doi:10.1186/1741-7007-11-6 CrossRefGoogle Scholar
  45. Nielsen S, Nielsen H, Pedersen M (2014) Juvenile life stages of the brown alga Fucus serratus L. are more sensitive to combined stress from high copper concentration and temperature than adults. Mar Biol 161:1895–1904. doi:10.1007/s00227-014-2471-1 CrossRefGoogle Scholar
  46. Nygård CA, Dring MJ (2008) Influence of salinity, temperature, dissolved inorganic carbon and nutrient concentration on the photosynthesis and growth of Fucus vesiculosus from the Baltic and Irish Seas. Eur J Phycol 43:253–262. doi:10.1080/09670260802172627 CrossRefGoogle Scholar
  47. Olischläger M, Bartsch I, Gutow L, Wiencke C (2012) Effects of ocean acidification on different life-cycle stages of the kelp Laminaria hyperborea (Phaeophyceae). Bot Mar 55(5):511–525CrossRefGoogle Scholar
  48. Olischläger M, Bartsch I, Gutow L, Wiencke C (2013) Effects of ocean acidification on growth and physiology of Ulva lactuca (Chlorophyta) in a rockpool-scenario. Phycol Res 61:180–190. doi:10.1111/pre.12006 CrossRefGoogle Scholar
  49. Pansch C, Schaub I, Havenhand J, Wahl M (2014) Habitat traits and food availability determine the response of marine invertebrates to ocean acidification. Global Change Biol 20:765–777. doi:10.1111/gcb.12478 CrossRefGoogle Scholar
  50. Pauls SU, Nowak C, Bálint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and species. Mol Ecol 22:925–946. doi:10.1111/mec.12152 CrossRefGoogle Scholar
  51. Pereyra R, Bergström L, Kautsky L, Johannesson K (2009) Rapid speciation in a newly opened postglacial marine environment, the Baltic Sea. BMC Evol Biol 9:70CrossRefGoogle Scholar
  52. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  53. Reusch TH, Hughes AR (2006) The emerging role of genetic diversity for ecosystem functioning: estuarine macrophytes as models. Estuar Coasts J ERF 29:159–164. doi:10.1007/BF02784707 CrossRefGoogle Scholar
  54. Reusch TBH, Wood TE (2007) Molecular ecology of global change. Mol Ecol 16:3973–3992. doi:10.1111/j.1365-294X.2007.03454.x CrossRefGoogle Scholar
  55. Reusch TBH, Ehlers A, Hämmerli A, Worm B (2005) Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc Natl Acad Sci USA 102:2826–2831. doi:10.1073/pnas.0500008102 CrossRefGoogle Scholar
  56. Rickert E, Karsten U, Pohnert G, Wahl M (2015) Seasonal fluctuations of chemical defenses against macrofouling in F. vesiculosus and F. serratus from the Baltic Sea. Biofouling 31:363–377CrossRefGoogle Scholar
  57. Rohde S, Hiebenthal C, Wahl M, Karez R, Bischof K (2008) Decreased depth distribution of Fucus vesiculosus (Phaeophyceae) in the Western Baltic: effects of light deficiency and epibionts on growth and photosynthesis. Eur J Phycol 43:143–150. doi:10.1080/09670260801901018 CrossRefGoogle Scholar
  58. Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450: 575–578. http://www.nature.com/nature/journal/v450/n7169/suppinfo/nature06262_S1.html
  59. Saderne V, Fietzek P, Herman PMJ (2013) Extreme variations of pCO2 and pH in a macrophyte meadow of the Baltic Sea in summer: evidence of the effect of photosynthesis and local upwelling. PLoS One 8:e62689. doi:10.1371/journal.pone.0062689 CrossRefGoogle Scholar
  60. Sarker MY, Bartsch I, Olischläger M, Gutow L, Wiencke, C (2013) Combined effects of CO2, temperature, irradiance and time on the physiological performance of Chondrus crispus (Rhodophyta). Bot Mar 56:63–74CrossRefGoogle Scholar
  61. Schmid R, Mills JA, Dring MJ (1996) Influence of carbon supply on the stimulation of light-saturated photosynthesis by blue light in Laminaria saccharina: implications for the mechanism of carbon acquisition in higher brown algae. Plant Cell Environ 19:383–391. doi:10.1111/j.1365-3040.1996.tb00330.x CrossRefGoogle Scholar
  62. Schmidt A, Coll M, Romanuk T, Lotze H (2011) Ecosystem structure and services in eelgrass Zostera marina and rockweed Ascophyllum nodosum habitats. Mar Ecol Prog Ser 437:51–68. doi:10.3354/meps09276 CrossRefGoogle Scholar
  63. Schneider B, Eilola K, Lukkari K, Muller-Karulis B, Neumann T (2015) Environmental impacts—Marine biogeochemistry. In: The BACC II Author Team (eds) Second assessment of climate change for the Baltic Sea basin. Springer, pp 337–361Google Scholar
  64. Serôdio J, Lavaud J (2011) A model for describing the light response of the nonphotochemical quenching of chlorophyll fluorescence. Photosynth Res 108:61–76. doi:10.1007/s11120-011-9654-0 CrossRefGoogle Scholar
  65. Serrão EA, Kautsky L, Brawley SH (1996) Distributional success of the marine seaweed Fucus vesiculosus L. in the brackish Baltic Sea correlates with osmotic capabilities of Baltic gametes. Oecologia 107:1–12CrossRefGoogle Scholar
  66. Steen H, Scrosati R (2004) Intraspecific competition in Fucus serratus and F. evanescens (Phaeophyceae: Fucales) germlings: effects of settlement density, nutrient concentration, and temperature. Mar Biol 144:61–70. doi:10.1007/s00227-003-1175-8 CrossRefGoogle Scholar
  67. Tatarenkov A, Jönsson RB, Kautsky L, Johannesson K (2007) Genetic structure in populations of Fucus vesiculosus (Phaeophyceae) over spatial scales from 10 m to 800 km. J Phycol 43:675–685. doi:10.1111/j.1529-8817.2007.00369.x CrossRefGoogle Scholar
  68. Torn K, Krause-Jensen D, Martin G (2006) Present and past depth distribution of bladderwrack (Fucus vesiculosus) in the Baltic Sea. Aquat Bot 84:53–62. doi:10.1016/j.aquabot.2005.07.011 CrossRefGoogle Scholar
  69. Violle C, Enquist BJ, McGill BJ et al (2012) The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 27:244–252. doi:10.1016/j.tree.2011.11.014 CrossRefGoogle Scholar
  70. Vogt H, Schramm W (1991) Conspicuous decline of Fucus in Kiel Bay (Western Baltic): what are the causes? Mar Ecol Prog Ser 69:189–194CrossRefGoogle Scholar
  71. Wahl M, Hay ME (1995) Associational resistance and shared doom: effects of epibiosis on herbivory. Oecologia 102:329–340. doi:10.1007/BF00329800 CrossRefGoogle Scholar
  72. Wahl M, Jormalainen V, Eriksson BK et al (2011) Stress ecology in Fucus: abiotic, biotic and genetic interactions. Adv Mar Biol 59:37–105. doi:10.1016/b978-0-12-385536-7.00002-9 CrossRefGoogle Scholar
  73. Wahl M, Molis M, Hobday AJ et al (2015a) The responses of brown macroalgae to environmental change from local to global scales: direct versus ecologically mediated effects. Perspec Phycol. doi:10.1127/pip/2015/0019 Google Scholar
  74. Wahl M, Buchholz B, Winde V et al (2015b) A novel mesocosm concept for the simulation of shallow underwater climates: the Kiel Outdoor Benthocosms (KOB). Limnol Oceanogr Methods. doi:10.1002/lom3.10055 Google Scholar
  75. Wahl M, Saderne V, Sawall Y (2015c) How good are we at assessing the impact of ocean acidification in coastal systems? Limitations, omissions and strengths of commonly used experimental approaches with special emphasis on the neglected role of fluctuations. Mar Freshwater Res. doi:10.1071/MF14154 Google Scholar
  76. Walsby AE (1997) Modelling the daily integral of photosynthesis by phytoplankton: its dependence on the mean depth of the population. Hydrobiologia 349:65–74. doi:10.1023/A:1003045528581 CrossRefGoogle Scholar
  77. Wernberg T, Russell Bayden D, Thomsen Mads S, Gurgel C, Frederico D, Bradshaw Corey JA, Poloczanska Elvira S, Connell Sean D (2011) Seaweed communities in retreat from ocean warming. Curr Biol 21:1828–1832. doi:10.1016/j.cub.2011.09.028 CrossRefGoogle Scholar
  78. Wikström SA, Kautsky L (2007) Structure and diversity of invertebrate communities in the presence and absence of canopy-forming Fucus vesiculosus in the Baltic Sea. Estuar Coast Shelf S 72:168–176. doi:10.1016/j.ecss.2006.10.009 CrossRefGoogle Scholar
  79. Wu H, Zou D, Gao K (2008) Impacts of increased atmospheric CO2 concentration on photosynthesis and growth of micro- and macro-algae. Sci China Ser C Life Sci 51:1144–1150. doi:10.1007/s11427-008-0142-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Balsam Al-Janabi
    • 1
  • Inken Kruse
    • 1
  • Angelika Graiff
    • 2
  • Ulf Karsten
    • 2
  • Martin Wahl
    • 1
  1. 1.Department of Marine EcologyGEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  2. 2.Institute of Biological Sciences, Applied Ecology and PhycologyUniversity of RostockRostockGermany

Personalised recommendations