Marine Biology

, 163:25 | Cite as

Trophic ecology of Mnemiopsis leidyi in the southern North Sea: a biomarker approach

  • Lies VansteenbruggeEmail author
  • Kris Hostens
  • Brecht Vanhove
  • Annelies De Backer
  • Laurence De Clippele
  • Marleen De Troch
Original paper


The non-indigenous ctenophore Mnemiopsis leidyi A. Agassiz 1865 was first observed in the southern North Sea in 2006 and has since then frequently been encountered. Knowledge on the diet, trophic position and interactions with other components of the pelagic food web will largely contribute to assess the impact of this species on the ecosystem. Using both stable isotope (SI) and fatty acid (FA) analysis, this study revealed spatial and temporal variation in the trophic ecology of M. leidyi in different ecosystems in the southern North Sea. Based on the isotopic composition, spatial differences were largely driven by variation at the base of the food web rather than diet changes of M. leidyi in the different ecosystems. Temporal variation in M. leidyi SI composition was also influenced by shifting baseline values and driven by seasonal changes in the associated plankton communities. This study provides first data on the FA composition of M. leidyi as compared to FA concentrations of two indigenous ctenophores. Total FA concentration in M. leidyi was three to four times lower compared to Pleurobrachia pileus and Beroe sp., categorising it as a lipid-poor organism. Trophic interactions between M. leidyi and two co-occurring ctenophores (P. pileus and Beroe sp.) showed considerable resource differentiation, which could be the result of competition or different diets. A mixture of zooplankton was identified as potential food sources for M. leidyi. FA markers supported the carnivorous diet of Beroe sp., but its SI composition did not confirm the predatory relation with M. leidyi.


Fatty Acid Profile Niche Width Fatty Acid Concentration Stable Isotope Composition Length Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The first author acknowledges a PhD grant of the Institute for Agricultural and Fisheries Research (ILVO). This research was executed in close cooperation with the Marine Biology section of Ghent University, with special thanks to Prof. Dr. Magda Vincx, and framed within the INTERREG IVa 2 Seas project MEMO (M. leidyi Ecology and Modelling: Observations of an invasive comb jelly in the southern North Sea). Laurence De Clippele and Brecht Vanhove did part of the analyses within their MSc program ‘Marine and Lacustrine Science and Management’ at UGent. The authors further wish to thank André Cattrijsse and Michiel Tjampens from the Flanders Marine Institute (VLIZ) and the captains and crew of RV Zeeleeuw, RV Simon Stevin, RV Luctor and RV Thalia for the logistic and practical support. Thanks to Tina Van Regenmortel, David Vuylsteke, Sofie Vandendriessche, Elvire Antajan, Morgane Travers, Valérie Lefèbvre, Lodewijk van Walraven, Sophie Pitois and Vincent Cornille for support during the sampling campaigns, to Jan Ranson for help with the preparation of the stable isotope samples, and to Dirk Van Gansbeke for assistance with the fatty acid analyses, the latter being supported by research grant 31523814 of FWO-Flanders awarded to Marleen De Troch. Finally, we want to thank the reviewers for their comments and suggestions which helped to improve the manuscript.

Supplementary material

227_2015_2800_MOESM1_ESM.pdf (229 kb)
Supplementary material 1 (PDF 229 kb)
227_2015_2800_MOESM2_ESM.pdf (253 kb)
Supplementary material 2 (PDF 252 kb)


  1. Abdulkadir S, Tsuchiya M (2008) One-step method for quantitative and qualitative analysis of fatty acids in marine animal samples. J Exp Mar Biol Ecol 354:1–8CrossRefGoogle Scholar
  2. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E Ltd, PlymouthGoogle Scholar
  3. Andrews JE, Greenaway AM, Dennis PF (1998) Combined carbon isotope and C/N ratios as indicators of source and fate of organic matter in a poorly flushed, tropical estuary: Hunts Bay, Kingston Harbour, Jamaica. Estuar Coast Shelf Sci 46:743–756CrossRefGoogle Scholar
  4. Anninsky BE, Finenko GA, Abolmasova GI, Hubareva ES, Svetlichny LS, Kideys AE (2005) Effect of starvation on the biochemical compositions and respiration rates of ctenophores Mnemiopsis leidyi and Beroe ovata in the Black Sea. J Mar Biol Assoc UK 85:549–561CrossRefGoogle Scholar
  5. Antajan E, Bastian T, Raud T, Brylinski J-M, Hoffman S, Breton G, Cornille V, Delegrange A, Vincent D (2014) The invasive ctenophore Mnemiopsis leidyi A. Agassiz, 1865 along the English Channel and the North Sea French coasts: another introduction pathway in northern European waters? Aquat Invasions 9:167–173CrossRefGoogle Scholar
  6. Augustine S, Jaspers C, Kooijman SALM, Carlotti F, Poggiale J-C, Freitas V, van der Veer H, van Walraven L (2014) Mechanisms behind the metabolic flexibility of an invasive comb jelly. J Sea Res 91:156–165CrossRefGoogle Scholar
  7. Briggs JC (2007) Marine biogeography and ecology: invasions and introductions. J Biogeogr 34:193–198CrossRefGoogle Scholar
  8. Brodeur RD, Suchman CL, Reese DC, Miller TW, Daly EA (2008) Spatial overlap and trophic interactions between pelagic fish and large jellyfish in the northern California Current. Mar Biol 154:649–659CrossRefGoogle Scholar
  9. Budge SM, Parrish CC (1998) Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. II. Fatty acids. Org Geochem 29:1547–1559CrossRefGoogle Scholar
  10. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E LTD, PlymouthGoogle Scholar
  11. Colin SP, Costello JH, Hansson LJ, Titelman J, Dabirir JO (2010) Stealth predation and the predatory success of the invasive ctenophore Mnemiopsis leidyi. PNAS 107:17223–17227CrossRefGoogle Scholar
  12. Condon RH, Graham WM, Duarte CM, Pitt KA, Lucas CH, Haddock QHD, Sutherland KR, Robinson KL, Dawson MN, Decker MB, Mills CE, Purcell JE, Malej A, Mianzan H, Uye S-I, Gelcich S, Madin LP (2012) Questioning the rise of gelatinous zooplankton in the world’s oceans. Bioscience 62:160–169CrossRefGoogle Scholar
  13. Copeman LA, Parrish CC (2003) Marine lipids in a cold coastal ecosystem: Gilbert Bay, Labrador. Mar Biol 143:1213–1227CrossRefGoogle Scholar
  14. Costello JH, Coverdale R (1998) Planktonic feeding and evolutionary significance of the lobate body plan within Ctenophora. Biol Bull 195:247–248CrossRefGoogle Scholar
  15. D’Ambra I, Carmichael RH, Graham WM (2014) Determination of δ13C and δ15N and trophic fractionation in jellyfish: implications for food web ecology. Mar Biol 161:473–480CrossRefGoogle Scholar
  16. Dalsgaard J, St John M, Kattner G, Müller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340CrossRefGoogle Scholar
  17. De Clippele L (2012) Assessing the trophic position of the invasive ctenophore Mnemiopsis leidyi in the Southern North Sea. Master thesis, Ghent University, GentGoogle Scholar
  18. De Troch M, Boeckx P, Cnudde C, Van Gansbeke D, Vanreusel A, Vincx M, Caramujo MJ (2012) Bioconversion of fatty acids at the basis of marine food webs: insights from a compound-specific stable isotope analysis. Mar Ecol Prog Ser 465:53–67CrossRefGoogle Scholar
  19. DeNiro MJ, Epstein S (1976) You are what you eat (plus a few per mil): the carbon isotope cycle in food chains. Geol Soc Am 8:834–835Google Scholar
  20. Dinasquet J, Titelman J, Møller LF, Setälä O, Granhag L, Andersen T, Båmstedt U, Haraldsson M, Hosia A, Katajisto T, Kragh T, Kuparinen J, Schrøter M-L, Søndergaard M, Tiselius P, Riemann L (2012) Cascading effects of the ctenophore Mnemiopsis leidyi on the planktonic food web in a nutrient-limited estuarine system. Mar Ecol Prog Ser 460:49–61CrossRefGoogle Scholar
  21. Eder K (1995) Gas chromatographic analysis of fatty-acid methyl esters. J Chromatogr B Biomed Appl 671:113–131CrossRefGoogle Scholar
  22. El-Sabaawi R, Dower JF, Kainz M, Mazumder A (2009) Characterizing dietary variability and trophic positions of coastal calanoid copepods: insight from stable isotopes and fatty acids. Mar Biol 156:225–237CrossRefGoogle Scholar
  23. Faasse MA, Bayha KM (2006) The ctenophore Mnemiopsis leidyi A. Agassiz 1865 in coastal waters of the Netherlands: an unrecognized invasion? Aquat Invasions 1:270–277CrossRefGoogle Scholar
  24. Falk-Petersen S, Dahl TM, Scott CL, Sargent JR, Gulliksen B, Kwasniewski S, Hop H, Millar R-M (2002) Lipid biomarkers and trophic linkages between ctenophores and copepods in Svalbard waters. Mar Ecol Prog Ser 227:187–194CrossRefGoogle Scholar
  25. Feuchtmayr H, Grey J (2003) Effect of preparation and preservation procedures on carbon and nitrogen stable isotope determinations from zooplankton. Rapid Commun Mass Spectrom 17:2605–2610CrossRefGoogle Scholar
  26. Fleming NEC, Houghton JDR, Magill CL, Harrod C (2011) Preservation methods alter stable isotope values in gelatinous zooplankton: implications for interpreting trophic ecology. Mar Biol 158:2141–2146CrossRefGoogle Scholar
  27. Frost JR, Denda A, Fox CJ, Jacoby CA, Koppelman R, Holtegaard Nielsen M, Youngbluth MJ (2012) Distribution and trophic links of gelatinous zooplankton on Dogger Bank, North Sea. Mar Biol 159:239–253CrossRefGoogle Scholar
  28. Fukuda Y, Naganuma T (2001) Potential dietary effects on the fatty acid composition of the common jellyfish Aurelia aurita. Mar Biol 138:1029–1035CrossRefGoogle Scholar
  29. GESAMP (Joint Group of Experts on the Scientific Aspects of Marine Pollution) (1997) Opportunistic settlers and the problem of the ctenophore Mnemiopsis leidyi invasion in the Black Sea. GESAMP reports and studies no. 58. IMO, LondonGoogle Scholar
  30. Gibbons MJ, Painting SJ (1992) The effects and implications of container volume on clearance rates of the ambush entangling predator Pleurobrachia pileus (Ctenophora: Tentaculata). J Exp Mar Biol Ecol 163:199–208CrossRefGoogle Scholar
  31. Granhag L, Møller LF, Hansson LJ (2011) Size-specific clearance rates of the ctenophore Mnemiopsis leidyi based on in situ gut content analyses. J Plankton Res 33:1043–1052CrossRefGoogle Scholar
  32. Greve W, Reiners F (1988) Plankton time: space dynamics in German Bight—a systems approach. Oecologia 77:487–496CrossRefGoogle Scholar
  33. Guckert JB, Antworth CP, Nichols PD, White DC (1985) Phospholipid, ester-linked fatty-acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Ecol 31:147–158CrossRefGoogle Scholar
  34. Hamer HH, Malzahn AM, Boersma M (2011) The invasive ctenophore Mnemiopsis leidyi a threat to fish recruitment in the North Sea? J Plankton Res 33:137–144CrossRefGoogle Scholar
  35. Hamilton SK, Lewis WM, Sippel SJ (1992) Energy sources for aquatic animals in the Orinoco River floodplain: evidence from stable isotopes. Oecologia 89:324–330CrossRefGoogle Scholar
  36. Heip CHR, Goosen NK, Herman PMJ, Kromkamp J, Middelburg JJ, Soetaert K (1995) Production and consumption of biological particles in temperate tidal estuaries. Oceanogr Mar Biol Annu Rev 33:1–150Google Scholar
  37. Hosia A, Titelman J, Hansson LJ, Haraldsson M (2011) Interactions between native and alien ctenophores: Beroe gracilis and Mnemiopsis leidyi in Gullmarsfjorden. Mar Ecol Prog Ser 422:129–138CrossRefGoogle Scholar
  38. Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80:595–602CrossRefGoogle Scholar
  39. Javidpour J, Molinero JC, Lehmann A, Hansen T, Sommer U (2009) Annual assessment of the predation of Mnemiopsis leidyi in a new invaded environment, the Kiel Fjord (Western Baltic Sea): a matter of concern? J Plankton Res 31:729–738CrossRefGoogle Scholar
  40. Ju S-J, Scolardi K, Daly KL, Harvey HR (2004) Understanding the trophic role of the Antarctic ctenophore, Callianira antarctica, using lipid biomarkers. Polar Biol 27:782–792CrossRefGoogle Scholar
  41. Kaneda T (1991) Iso-fatty acid and anteiso-fatty acids in bacteria—biosynthesis function and taxonomic significance. Microbiol Rev 55:288–302Google Scholar
  42. Katsanevakis S, Gatto F, Zenetos A, Cardoso AC (2013) How many marine aliens in Europe? Manag Biol Invasion 4:37–42CrossRefGoogle Scholar
  43. Kellnreitner F, Pockberger M, Asmus R, Asmus H (2013) Feeding interactions between the introduced ctenophore Mnemiopsis leidyi and juvenile herring Clupea harengus in the Wadden Sea. Biol Invasions 15:871–884CrossRefGoogle Scholar
  44. Kremer P, Reeve MR (1989) Growth dynamics of a ctenophore (Mnemiopsis) in relation to variable food supply. II. Carbon budgets and growth model. J Plankton Res 11:553–574CrossRefGoogle Scholar
  45. Layman CA, Arrington DA, Montaña CG, Post DM (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88:42–48CrossRefGoogle Scholar
  46. Lee RF (1974) Lipids of zooplankton from Bute Inlet, British Columbia. J Fish Res Board Can 31:1577–1582CrossRefGoogle Scholar
  47. Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Mar Ecol Prog Ser 307:273–306CrossRefGoogle Scholar
  48. Lonsdale DJ, Heinle DR, Siegfried C (1979) Carnivorous feeding behavior of the adult calanoid copepod Acartia tonsa Dana. J Exp Mar Biol Ecol 36:235–248CrossRefGoogle Scholar
  49. Mariotti A, Lancelot C, Billen G (1984) Natural isotopic composition of nitrogen as a tracer of origin for suspended organic matter in the Scheldt estuary. Geochim Cosmochim Acta 48:549–555CrossRefGoogle Scholar
  50. Mauchline J (1980) The biology of mysids and euphausids (Crustacea, Mysidacea). Adv Mar Biol 18:3–317CrossRefGoogle Scholar
  51. McCutchan JH, Lewis WM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390CrossRefGoogle Scholar
  52. Middelburg JJ, Herman PMJ (2007) Organic matter processing in tidal estuaries. Mar Chem 106:127–147CrossRefGoogle Scholar
  53. Middelburg JJ, Nieuwenhuize J (1998) Carbon and nitrogen stable isotopes in suspended matter and sediments form the Schelde Estuary. Mar Chem 60:217–225CrossRefGoogle Scholar
  54. Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140CrossRefGoogle Scholar
  55. Montoya JP, Horrigan SG, McCarthy JJ (1990) Natural abundance of 15N in particulate nitrogen and zooplankton in the Chesepeake bay. Mar Ecol Prog Ser 65:35–61CrossRefGoogle Scholar
  56. Nagata RM, Moreira MZ, Pimentel CR, Morandini AC (2015) Food web characterization based on δ15N and δ13C reveals isotopic niche partitioning between fish and jellyfish in a relatively pristine ecosystem. Mar Ecol Prog Ser 519:13–27CrossRefGoogle Scholar
  57. Nichols PD, Danaher KT, Koslow JA (2003) Occurrence of high levels of tetracosahexaenoic acid in the jellyfish Aurelia sp. Lipids 38:1207–1210CrossRefGoogle Scholar
  58. O’Brien TD, Wiebe PH, Hay S (2011) ICES Zooplankton Status Report 2008/2009. ICES cooperative research report no. 307 (152 pp)Google Scholar
  59. Parnell AC, Inger RK, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE. doi: 10.1371/journal.pone.0009672 Google Scholar
  60. Pauly D, Graham W, Libralato S, Morissette L, Deng Palomares M (2009) Jellyfish in ecosystems, online databases, and ecosystem models. Hydrobiologia 616:67–85CrossRefGoogle Scholar
  61. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320CrossRefGoogle Scholar
  62. Petursdottir H, Falk-Petersen S, Hop H, Gislason A (2010) Calanus finmarchicus along the northern Mid-Atlantic Ridge: variation in fatty acid and alcohol profiles and stable isotope values, δ15N and δ13C. J Plankton Res. doi: 10.1093/plankt/fbq036 Google Scholar
  63. Pitt KA, Connolly RM, Meziane T (2009) Stable isotope and fatty acid tracers in energy and nutrient studies of jellyfish: a review. Hydrobiologia 616:119–132CrossRefGoogle Scholar
  64. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718CrossRefGoogle Scholar
  65. Purcell JE (2009) Extension of methods for jellyfish and ctenophore trophic ecology to large-scale research. Hydrobiologia 616:23–50CrossRefGoogle Scholar
  66. Purcell JE, Arai MN (2001) Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451:27–44CrossRefGoogle Scholar
  67. Rapoza R, Novak D, Costello JH (2005) Life-stage dependent, in situ dietary patterns of the lobate ctenophore Mnemiopsis leidyi Agassiz 1865. J Plankton Res 27:951–956CrossRefGoogle Scholar
  68. Ruiz GM, Carlton JT, Grosholz ED, Hines AH (1997) Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences. Am Zool 37:621–632CrossRefGoogle Scholar
  69. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596CrossRefGoogle Scholar
  70. Sommer U, Stibor H, Katechakis A, Sommer F, Hansen T (2002) Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production. Hydrobiologia 484:11–20CrossRefGoogle Scholar
  71. Stevens CJ, Deibel D, Parrish CC (2004) Incorporation of bacterial fatty acids and changes in a wax ester-based omnivory index during a long-term incubation experiment with Calanus glacialis Jaschnov. J Exp Mar Biol Ecol 303:135–156CrossRefGoogle Scholar
  72. Streftaris N, Zenetos A, Papathanassiou E (2005) Globalisation in marine ecosystems: the story of non-indigenous marine species across European seas. Oceanogr Mar Biol Annu Rev 43:419–453Google Scholar
  73. Sullivan LJ (2010) Gut evacuation of larval Mnemiopsis leidyi A. Agassiz (Ctenophora, Lobata). J Plankton Res 32:69–74CrossRefGoogle Scholar
  74. Sullivan LJ, Gifford DJ (2007) Growth and feeding rates of the newly hatched larval ctenophore Mnemiopsis leidyi A. Agassiz (Ctenophora, Lobata). J Plankton Res 29:949–965CrossRefGoogle Scholar
  75. Sweeney RE, Kaplan IR (1980a) Natural abundances of 15N as a source indicator for near-shore marine sedimentary and dissolved nitrogen. Mar Chem 9:81–94CrossRefGoogle Scholar
  76. Sweeney RE, Kaplan IR (1980b) Tracing flocculent industrial and domestic sewage transport on San Pedro shelf, Southern California, by nitrogen and sulphur isotope ratios. Mar Environ Res 3:215–224CrossRefGoogle Scholar
  77. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria.
  78. Thompson RM, Brose U, Dunne JA, Hall RO Jr, Hladyz S, Kitching RL, Martinez ND, Rantala H, Romanuk TN, Stouffer DB, Tylianakis JM (2012) Food webs: reconciling the structure and function of biodiversity. Trends Ecol Evol 27:689–697CrossRefGoogle Scholar
  79. Thornton SF, McManus J (1994) Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuar Coast Shelf Sci 38:219–233CrossRefGoogle Scholar
  80. Tykot RH (2004) Stable isotopes and diet: you are what you eat. Proc Int Sch Phys “Enrico Fermi” 154:433–444Google Scholar
  81. Van Ginderdeuren K, Hostens K, Hoffman S, Vansteenbrugge L, Soenen K, De Blauwe H, Robbens J, Vincx M (2012) Distribution of the invasive ctenophore Mnemiopsis leidyi in the Belgian part of the North Sea. Aquat Invasions 7:163–169CrossRefGoogle Scholar
  82. Van Ginderdeuren K, Van Hoey G, Vincx M, Hostens K (2014) The mesozooplankton community of the Belgian shelf (North Sea). J Sea Res 85:48–58CrossRefGoogle Scholar
  83. van Looijengoed W (2011) Stable isotope analysis as tool to investigate trophic relations of zooplanktivorous species in the western Wadden Sea. Master thesis, Rijksuniversiteit Groningen (RUG) and Nederlands Instituut Onderzoek der Zee (NIOZ)Google Scholar
  84. van Walraven L, Langenberg VT, van der Veer HW (2013) Seasonal occurrence of the invasive ctenophore Mnemiopsis leidyi in the western Dutch Wadden Sea. J Sea Res 82:86–92CrossRefGoogle Scholar
  85. Vander Zanden MJ, Rasmussen JB (2001) Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnol Oceanogr 46:2061–2066CrossRefGoogle Scholar
  86. Vansteenbrugge L, Ampe B, De Troch M, Vincx M, Hostens K (2015) On the distribution and population dynamics of the ctenophore Mnemiopsis leidyi in the Belgian part of the North Sea and Westerschelde estuary. Mar Environ Res. doi: 10.1016/j.marenvres.2015.07.011 Google Scholar
  87. Verslycke T, Ghekiere A, Janssen CR (2004) Seasonal and spatial patterns in cellular energy allocation in the estuarine mysid Neomysis integer (Crustacea: Mysidacea) of the Scheldt estuary (The Netherlands). J Exp Mar Biol Ecol 306:245–267CrossRefGoogle Scholar
  88. Waggett R, Costello JH (1999) Capture mechanisms used by the lobate ctenophore, Mnemiopsis leidyi, preying on the copepod Acartia tonsa. J Plankton Res 21:2037–2052CrossRefGoogle Scholar
  89. Ying C, Ying W, Jing Z, Na W (2012) Potential dietary influence on the stable isotopes and fatty acid composition of jellyfishes in the Yellow Sea. J Mar Biol Assoc UK 92:1325–1333CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Lies Vansteenbrugge
    • 1
    • 2
    Email author
  • Kris Hostens
    • 1
  • Brecht Vanhove
    • 2
  • Annelies De Backer
    • 1
  • Laurence De Clippele
    • 2
  • Marleen De Troch
    • 2
  1. 1.Bio-environmental Research, Aquatic Environment and Quality, Animal Sciences UnitInstitute for Agricultural and Fisheries Research (ILVO)OstendBelgium
  2. 2.Marine Biology, Biology Department, Faculty of SciencesGhent University (UGent)GhentBelgium

Personalised recommendations