Marine Biology

, 163:17 | Cite as

Islands in the stream: kelp detritus as faunal magnets

  • D. O. Duggins
  • M. C. Gómez-Buckley
  • R. M. Buckley
  • A. T. Lowe
  • A. W. E. Galloway
  • M. N. Dethier
Original paper


Biomass from nearshore primary producers can be an important subsidy to both pelagic and benthic communities, which are disconnected in space from sources of production. We examine the role of this macrophyte biomass in two habitats (pelagic and nearshore benthic) in terms of both trophic support and spatial refugia. Experimental benthic “islands” of seaweed biomass created nearshore subtidal habitats (at 10–30 m depth) which were colonized by diverse fauna, ranging from abundant harpacticoid copepods, to shrimp and snails, to small fishes. The abundance and species composition of colonizers varied somewhat among kelp species and with the degree of degradation of the kelp. Use of plastic strips as kelp mimics allowed us to decouple primary trophic and refugia effects; plastic attracted some macrofauna but far fewer organisms in the <1.5 mm size class. Observational data taken from floating pelagic detrital islands showed that these algal rafts similarly attract many small crustaceans and other invertebrates, which then can serve as prey for consumers such as juvenile rockfish. The fauna of the pelagic drift islands was dominated by harpacticoid copepods and gammarid amphipods. Stomach contents of associated juvenile splitnose rockfish were dominated by gammarids and calanoid copepods.


Macrophyte Detritus Meiofauna Calanoid Copepod Kelp Forest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank L. Dennee-Lee, A. Gjurasic, A. Gómez-Buckley, and J. Schulte for helping to sort zooplankton samples; K. Page for work on some of the floating habitats; numerous dive assistants from FHL; and the Friday Harbor Laboratories and School of Aquatic and Fishery Sciences for use of space and facilities. W. Raymond and R. Whippo assisted with subtidal experiments. This work was supported by the National Science Foundation (NSF; Biological Oceanography Division of Ocean Sciences grant 0925718) and an RET supplement. We appreciate the constructive comments of K. Krumhansl and one additional reviewer.

Supplementary material

227_2015_2781_MOESM1_ESM.pdf (367 kb)
Supplementary material 1 (PDF 367 kb)


  1. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, PlymouthGoogle Scholar
  2. Britton-Simmons KH, Foley G, Okamoto D (2009) Spatial subsidy in the subtidal zone: utilization of drift algae by a deep subtidal sea urchin. Aquat Biol 5:233–243CrossRefGoogle Scholar
  3. Britton-Simmons KH, Rhoades AL, Pacunski RE, Galloway AWE, Lowe AT, Sosik EA, Dethier MN, Duggins DO (2012) Habitat and bathymetry influence the landscape-scale distribution and abundance of drift macrophytes and associated invertebrates. Limnol Oceanogr 57(1):176–184CrossRefGoogle Scholar
  4. Buckley RM (1997) Substrate associated recruitment of juvenile Sebastes in artificial and natural habitats in Puget Sound and the San Juan Archipelago, Washington. Dissertation, University of Washington, SeattleGoogle Scholar
  5. Clarke KR, Gorley RN (2006) PRIMER v6: User Manual/Tutorial. PRIMER-E, PlymouthGoogle Scholar
  6. Colombini I, Chelazzi L (2003) Influence of marine allochthonous input on sandy beach communities. Oceanogr Mar Biol Annu Rev 41:115–159Google Scholar
  7. Dayton PK (1985) Ecology of kelp communities. Annu Rev Ecol Syst 16:214–245CrossRefGoogle Scholar
  8. Dethier MN, Brown AS, Burgess S, Eisenlord ME, Galloway AWE, Kimber J, Lowe AT, O’Neil CM, Raymond WW, Sosik EA, Duggins DO (2014) Degrading detritus: changes in food quality of aging kelp tissue varies with species. J Exp Mar Biol Ecol 460:72–79CrossRefGoogle Scholar
  9. Duarte CM, Cebrian J (1996) The fate of marine autotrophic production. Limnol Oceanogr 41:1758–1766CrossRefGoogle Scholar
  10. Dugan JE, Hubbard DM, McCrary MD, Pierson MO (2003) The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuar Coast Shelf Sci 58:25–40CrossRefGoogle Scholar
  11. Duggins DO (1980) Kelp beds and sea otters: an experimental approach. Ecology 61:447–453CrossRefGoogle Scholar
  12. Duggins DO, Eckman JE (1994) The role of kelp detritus in the growth of benthic suspension feeders in an understory kelp forest. J Exp Mar Biol Ecol 176:53–68CrossRefGoogle Scholar
  13. Filbee-Dexter K, Scheibling RE (2012) Hurricane-mediated defoliation of kelp beds and pulsed delivery of kelp detritus to offshore sedimentary habitats. Mar Ecol Prog Ser 455:51–64CrossRefGoogle Scholar
  14. Fox CH, El-Sabaawi R, Paquet PC, Reimchen TE (2014) Pacific herring Clupea pallasii and wrack macrophytes subsidize semi-terrestrial detritivores. Mar Ecol Prog Ser 495:49–64CrossRefGoogle Scholar
  15. Goldstein MC, Carson HS, Eriksen M (2014) Relationship of diversity and habitat area in North Pacific plastic associated rafting communities. Mar Biol 161:1441–1453CrossRefGoogle Scholar
  16. Gómez-Buckley MC (2000) Feeding ecology of juvenile splitnose rockfish (Sebastes diploproa) associated with drifting habitats in the central San Juan Archipelago, Washington. Masters thesis, University of Washington, SeattleGoogle Scholar
  17. Gorelova TA, Fedoryako BI (1986) Topic and trophic relationships of fishes associated with drifting Sargassum algae. J Ichthy 26(2):63–72Google Scholar
  18. Gutow L, Beermann J, Buschbaum C, Rivadeneria MM, Theil M (2015) Castaways can’t be choosers—homogenization of rafting assemblages on floating seaweeds. J Sea Res 95:161–171CrossRefGoogle Scholar
  19. Hagen EM, McCluney KE, Wyant KA et al (2012) A meta-analysis of the effects of detritus on primary producers and consumers in marine, freshwater, and terrestrial ecosystems. Oikos 121:1507–1515. doi: 10.1111/j.1600-0706.2011.19666.x CrossRefGoogle Scholar
  20. Hernández-Carmona G, Hughes B, Graham MH (2006) Reproductive longevity of drifting kelp Macrocystis pyrifera (Phaeophyceae) in Monterey Bay, USA. J Phycol 42:1199–1207CrossRefGoogle Scholar
  21. Hinojosa IA, Pizarro M, Ramos M, Thiel M (2010) Spatial and temporal distribution of floating kelp in the channels and fjords of southern Chile. Estuar Coast Shelf Sci 87:367–377. doi: 10.1016/j.ecss.2009.12.010 CrossRefGoogle Scholar
  22. Hobday AJ (2000) Abundance and dispersal of drifting kelp Macrocystis pyrifera rafts in the Southern California Bight. Mar Ecol Prog Ser 195:101–116. doi: 10.3354/meps195101 CrossRefGoogle Scholar
  23. Kelly RJ, Krumhansl KA, Scheibling RE (2012) Drift algal subsidies to sea urchins in low productivity habitats. Mar Ecol Prog Ser 452:145–157CrossRefGoogle Scholar
  24. Kingsford MJ, Choat JH (1985) The fauna associated with drift algae captured with a plankton-mesh purse seine net. Limnol Oceanogr 30:618–630CrossRefGoogle Scholar
  25. Krumhansl KA, Scheibling RE (2011) Detrital production in Nova Scotian kelp beds: patterns and processes. Mar Ecol Prog Ser 421:67–82CrossRefGoogle Scholar
  26. Krumhansl KA, Scheibling RE (2012a) Production and fate of kelp detritus. Mar Ecol Prog Ser 467:281–302CrossRefGoogle Scholar
  27. Krumhansl KA, Scheibling RE (2012b) Detrital subsidy from subtidal algal beds is altered by the invasive green alga Codium fragile ssp. fragile. Mar Ecol Prog Ser 456:73–85CrossRefGoogle Scholar
  28. Lowe AT, Whippo R, Galloway AWE, Britton-Simmons KH, Dethier MN (2015) Sedentary urchins influence benthic community composition below the macroalgal zone. Mar Ecol 36:129–140CrossRefGoogle Scholar
  29. Mann KH (1973) Seaweeds: their productivity and strategy for growth. Science 182:975–981CrossRefGoogle Scholar
  30. Mann KH (1988) Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnol Oceanogr 33:910–930CrossRefGoogle Scholar
  31. Mascart T, Agusto L, Lepoint G, Remy F, De Troch M (2015) How do harpacticoid copepods colonize detrital seagrass leaves? Mar Biol 162:929–943CrossRefGoogle Scholar
  32. McLean JH, Gosliner TM (1996) Taxonomic Atlas of the benthic fauna of the Santa Maria basin and western Santa Barbara Channel. Volume 9. In: Scott PH, Blake JA, Lissner AL (eds) The Mollusca, part 2: the Gastropoda. Santa Barbara Museum of Natural History, Santa BarbaraGoogle Scholar
  33. Murie LJ (1959) Fauna of the Aleutian Islands and Alaska Peninsula. N Am Fauna 61:1–364CrossRefGoogle Scholar
  34. Newell RC, Lucas MI, Velimirov B, Seiderer LJ (1980) Quantitative significance of dissolved organic losses following fragmentation of kelp (Ecklonia maxima and Laminaria pallida). Mar Ecol Prog Ser 2:45–59CrossRefGoogle Scholar
  35. Nordstrom M, Booth DM (2007) Drift algae reduce foraging efficiency of juvenile flatfish. J Sea Res 58:335–341CrossRefGoogle Scholar
  36. Okey TA (2003) Macrobenthic colonist guilds and renegades in Monterey Canyon (USA) drift algae: partitioning multidimensions. Ecol Monogr 73:415–440CrossRefGoogle Scholar
  37. Orr M, Zimmer M, Jelinski DE, Mews M (2005) Wrack deposition on different beach types: spatial and temporal variation in the pattern of subsidy. Ecology 86:1496–1507. doi: 10.1890/04-1486 CrossRefGoogle Scholar
  38. Orr KK, Wilding TA, Horstmeyer L, Weigl S, Heymans JJ (2014) Detached macroalgae: its importance to inshore sandy beach fauna. Estuar Coast Shelf Sci 150:125–135CrossRefGoogle Scholar
  39. Polis GA, Power ME, Huxel GR (eds) (2004) Food webs at the landscape level. University of Chicago Press, ChicagoGoogle Scholar
  40. Reed DC, Rassweiler A, Arkema KK (2008) Biomass rather than growth rate determines variation in net primary production by giant kelp. Ecology 89:2493–2505. doi: 10.1890/07-1106.1 CrossRefGoogle Scholar
  41. Rothäusler E, Gómez I, Hinojosa IA et al (2009) Effect of temperature and grazing on growth and reproduction of floating Macrocystis spp. (Phaeophyceae) along a latitudinal gradient. J Phycol 45:547–559. doi: 10.1111/j.1529-8817.2009.00676.x CrossRefGoogle Scholar
  42. Shaffer JA, Doty DC, Buckley RM, West JE (1995) Crustacean community composition and trophic use of the drift vegetation habitat by juvenile splitnose rockfish Sebastes diploproa. Mar Ecol Prog Ser 123:13–21CrossRefGoogle Scholar
  43. Steinberg PD (1985) Feeding preferences of Tegula funebralis and chemical defenses of marine brown algae. Ecol Monogr 55:333–349CrossRefGoogle Scholar
  44. Van Guelpen L, Markle DF, Duggan DJ (1982) An evaluation of accuracy, precision, and speed of several zooplankton subsampling techniques. J Cons Int Explor Mer 40:226–236CrossRefGoogle Scholar
  45. Vanderklift MA, Wernberg T (2008) Detached kelps from distant sources are a food subsidy for sea urchins. Oecologia 157:327–335CrossRefGoogle Scholar
  46. Vanderklift M, Wernberg T (2010) Stable isotopes reveal a consistent consumer—diet relationship across hundreds of kilometres. Mar Ecol Prog Ser 403:53–61CrossRefGoogle Scholar
  47. Vetter EW (1994) Hotspots of benthic production. Nature 372:47. doi: 10.1038/372047a0 CrossRefGoogle Scholar
  48. Vetter EW, Dayton PK (1999) Macrofaunal communities within and adjacent to a detritus-rich submarine canyon. Deep Sea Res 45:25–54CrossRefGoogle Scholar
  49. Wichmann C-S, Hinojosa IA, Thiel M (2012) Floating kelps in Patagonian Fjords: an important vehicle for rafting invertebrates and its relevance for biogeography. Mar Biol 159:2035–2049. doi: 10.1007/s00227-012-1990- CrossRefGoogle Scholar
  50. Wright JM (1989) Detached chlorophytes as nursery areas for fish in Sulaibikhat Bay, Kuwait. Estuar Coast Shelf Sci 28:185–193CrossRefGoogle Scholar
  51. Yamasaki M, Aono M, Ogawa N, Tanaka K, Imoto Z, Nakamura Y (2014) Drifting algae and fish: implications of tropical Sargassum invasion due to ocean warming in western Japan. Est Coast Shelf Sci 147:32–41CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • D. O. Duggins
    • 1
  • M. C. Gómez-Buckley
    • 2
  • R. M. Buckley
    • 3
  • A. T. Lowe
    • 4
  • A. W. E. Galloway
    • 1
    • 5
  • M. N. Dethier
    • 1
    • 4
  1. 1.Friday Harbor LaboratoriesUniversity of WashingtonFriday HarborUSA
  2. 2.Science DepartmentSteilacoom High SchoolSteilacoomUSA
  3. 3.College of the Environment, Aquatic and Fishery SciencesUniversity of WashingtonSeattleUSA
  4. 4.Biology DepartmentUniversity of WashingtonSeattleUSA
  5. 5.Oregon Institute of Marine BiologyUniversity of OregonCharlestonUSA

Personalised recommendations