Sea turtles return home after intentional displacement from coastal foraging areas

Abstract

Vulnerable species may be removed from their normal habitat and released at a new location for conservation reasons (e.g. re-establish or augment a local population) or due to difficulty or danger in returning individuals to original sites (e.g. after captivity for research or rehabilitation). Achieving the intended conservation benefits will depend, in part, on whether or not the released animals remain at the new human-selected location. The present study tested the hypothesis that hard-shelled sea turtles along the coast of north-eastern Australia (9–28°S, 142–153°E) would not remain at new locations and would attempt to return to their original areas. We used satellite-tracking data gathered previously for different purposes over several years (1996–2014). Some turtles had been released at their capture sites, inferred to be home areas, while other turtles had been displaced (released away from their inferred home areas) for various reasons. All non-displaced turtles (n = 54) remained at their home areas for the duration of tracking. Among displaced turtles (n = 59), the large majority travelled back to their respective home areas (n = 52) or near home (n = 4). Homing turtles travelled faster and adopted straighter routes in cooler water and travelled faster by day than by night. Our results showed that displacement up to 117.4 km and captivity up to 514 days did not disrupt homing ability nor diminish fidelity to the home area. However, for homing turtles we infer energetic costs and heightened risk in unfamiliar coastal waters. Confirmed homing suggests that moving individuals away from danger might offer short-term benefit (e.g. rescue from an oil spill), but moving turtles to a new foraging area is unlikely to succeed as a long-term conservation strategy. Priority must rather be placed on protecting their original habitat.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Åkesson S, Broderick AC, Glen F, Godley BJ, Luschi P, Papi F, Hays GC (2003) Navigation by green turtles: which strategy do displaced adults use to find Ascension Island? Oikos 103:363–372. doi:10.1034/j.1600-0706.2003.12207.x

    Article  Google Scholar 

  2. Avens L, Lohmann KJ (2003) Use of multiple orientation cues by juvenile loggerhead sea turtles Caretta caretta. J Exp Biol 206:4317–4325. doi:10.1242/jeb.00657

    Article  Google Scholar 

  3. Avens L, Braun-McNeill J, Epperly S, Lohmann KJ (2003) Site fidelity and homing behavior in juvenile loggerhead sea turtles (Caretta caretta). Mar Biol 143:211–220. doi:10.1007/s00227-003-1085-9

    Article  Google Scholar 

  4. Bailey H, Shillinger G, Palacios D, Bograd S, Spotila J, Paladino F, Block B (2008) Identifying and comparing phases of movement by leatherback turtles using state-space models. J Exp Mar Biol Ecol 356:128–135. doi:10.1016/j.jembe.2007.12.020

    Article  Google Scholar 

  5. Barham PJ et al (2006) Return to Robben Island of African Penguins that were rehabilitated, relocated or reared in captivity following the Treasure oil spill of 2000. Ostrich 77:202–209. doi:10.2989/00306520609485534

    Article  Google Scholar 

  6. Barraquand F, Benhamou S (2008) Animal movements in heterogeneous landscapes: identifying profitable places and homogeneous movement bouts. Ecology 89:3336–3348. doi:10.1890/08-0162.1

    Article  Google Scholar 

  7. Barton K (2015) MuMIn: multi-model inference. R package v. 1.15.1. http://CRAN.R-project.org/package=MuMIn. Accessed 3 Aug 2015

  8. Batschelet E (1981) Circular statistics in biology. Academic Press, New York

    Google Scholar 

  9. Beaman R (2010) Project 3DGBR: a high-resolution depth model for the Great Barrier Reef and Coral Sea. Marine and Tropical Sciences Research Facility (MTSRF) Project 25i1a Final Report:pp. 13 plus Appendix 11

  10. Becker RA, Chambers JM, Wilks AR (1988) The new S language: a programming environment for data analysis and graphics. Wadsworth and Brooks/Cole Advanced Books & Software, Monterey, CA

    Google Scholar 

  11. Benhamou S (2011) Dynamic approach to space and habitat use based on biased random bridges. PLoS One 6:e14592. doi:10.1371/journal.pone.0014592

    CAS  Article  Google Scholar 

  12. Benhamou S, Sudre J, Bourjea J, Ciccione S, De Santis A, Luschi P (2011) The role of geomagnetic cues in green turtle open sea navigation. PLoS One 6:e26672. doi:10.1371/journal.pone.0026672

    CAS  Article  Google Scholar 

  13. Bureau of Meteorology (2015) Climate glossary. Commonwealth of Australia. http://www.bom.gov.au/climate/glossary/seasons.shtml. Accessed 15 July 2015

  14. Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  15. Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519. doi:10.1016/j.ecolmodel.2006.03.017

    Article  Google Scholar 

  16. Calenge C (2015a) adehabitatHR: home range estimation. R package v. 0.4.14. http://CRAN.R-project.org/package=adehabitatHR. Accessed 19 Sept 2015

  17. Calenge C (2015b) adehabitatLT: analysis of animal movements. R package v. 0.3.20. http://CRAN.R-project.org/package=adehabitatLT. Accessed 19 Sept 2015

  18. CLS (2011) Argos user’s manual. CLS, Ramonville Saint-Agne

    Google Scholar 

  19. Cribari-Neto F, Zeileis A (2010) Beta regression in R. J Stat Softw 34:1–24

    Article  Google Scholar 

  20. Daniell JJ (2008) Development of a bathymetric grid for the Gulf of Papua and adjacent areas: a note describing its development. J Geophys Res (Earth Surf) 113:F01S15. doi:10.1029/2006JF000673

    Google Scholar 

  21. Fischer J, Lindenmayer DB (2000) An assessment of the published results of animal relocations. Biol Conserv 96:1–11. doi:10.1016/S0006-3207(00)00048-3

    Article  Google Scholar 

  22. Fournier DA et al (2011) AD model builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Methods Softw 27:233–249. doi:10.1080/10556788.2011.597854

    Article  Google Scholar 

  23. Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Beverley Hills, CA

    Google Scholar 

  24. Godley BJ, Blumenthal JM, Broderick AC, Coyne MS, Godfrey MH, Hawkes LA, Witt MJ (2008) Satellite tracking of sea turtles: where have we been and where do we go next? Endanger Spec Res 4:3–22. doi:10.3354/esr00060

    Article  Google Scholar 

  25. Griffith B, Scott JM, Carpenter JW, Reed C (1989) Translocation as a species conservation tool: status and strategy. Science 245:477–480. doi:10.1126/science.245.4917.477

    CAS  Article  Google Scholar 

  26. Hays GC, Åkesson S, Godley BJ, Luschi P, Santidrian P (2001) The implications of location accuracy for the interpretation of satellite-tracking data. Anim Behav 61:1035–1040. doi:10.1006/anbe.2001.1685

    Article  Google Scholar 

  27. Hays GC, Åkesson S, Broderick AC, Glen F, Godley BJ, Papi F, Luschi P (2003a) Island-finding ability of marine turtles. Proc R Soc Lond B Biol Sci 270:S5–S7. doi:10.1098/rsbl.2003.0022

    Article  Google Scholar 

  28. Hays GC, Broderick AC, Godley BJ, Luschi P, Nichols WJ (2003b) Satellite telemetry suggests high levels of fishing-induced mortality in marine turtles. Mar Ecol Prog Ser 262:305–309. doi:10.3354/meps262305

    Article  Google Scholar 

  29. Hays GC, Bradshaw CJA, James MC, Lovell P, Sims DW (2007) Why do Argos satellite tags deployed on marine animals stop transmitting? J Exp Mar Biol Ecol 349:52–60. doi:10.1016/j.jembe.2007.04.016

    Article  Google Scholar 

  30. Hazel J (2009) Evaluation of fast-acquisition GPS in stationary tests and fine-scale tracking of green turtles. J Exp Mar Biol Ecol 374:58–68. doi:10.1016/j.jembe.2009.04.009

    Article  Google Scholar 

  31. Hazel J, Lawler IR, Hamann M (2009) Diving at the shallow end: green turtle behaviour in near-shore foraging habitat. J Exp Mar Biol Ecol 371:84–92. doi:10.1016/j.jembe.2009.01.007

    Article  Google Scholar 

  32. Hazen E et al (2012) Ontogeny in marine tagging and tracking science: technologies and data gaps. Mar Ecol Prog Ser 457:221–240. doi:10.3354/meps09857

    Article  Google Scholar 

  33. Heithaus MR, Frid A, Dill LM (2002) Shark-inflicted injury frequencies, escape ability, and habitat use of green and loggerhead turtles. Mar Biol 140:229–236. doi:10.1007/s00227-001-0712-6

    Article  Google Scholar 

  34. Heithaus MR, Wirsing AJ, Thomson JA, Burkholder DA (2008) A review of lethal and non-lethal effects of predators on adult marine turtles. J Exp Mar Biol Ecol 356:43–51. doi:10.1016/j.jembe.2007.12.013

    Article  Google Scholar 

  35. Hoenner X, Whiting SD, Hindell MA, McMahon CR (2012) Enhancing the use of argos satellite data for home range and long distance migration studies of marine animals. PLoS One 7:e40713. doi:10.1371/journal.pone.0040713

    CAS  Article  Google Scholar 

  36. IUCN/SSC (2013) Guidelines for reintroductions and other conservation translocations. Version 1.0. IUCN Species Survival Commission, Gland

    Google Scholar 

  37. Jonsen ID, Myers RA, James MC (2006) Robust hierarchical state-space models reveal diel variation in travel rates of migrating leatherback turtles. J Anim Ecol 75:1046–1057. doi:10.1111/j.1365-2656.2006.01129.x

    Article  Google Scholar 

  38. Jonsen ID et al (2013) State-space models for bio-loggers: a methodological road map. Deep Sea Res Part II Top Stud Oceanogr 88–89:34–46. doi:10.1016/j.dsr2.2012.07.008

    Article  Google Scholar 

  39. Knip D, Heupel M, Simpfendorfer C (2012) To roam or to home: site fidelity in a tropical coastal shark. Mar Biol 159:1647–1657. doi:10.1007/s00227-012-1950-5

    Article  Google Scholar 

  40. Lewis SE (1995) Roost fidelity of bats: a review. J Mammal 76:481–496. doi:10.2307/1382357

    Article  Google Scholar 

  41. Limpus CJ (1978) The reef. In: Lavery HJ (ed) Exploration north: Australia’s wildlife from desert to reef. Richmond Hill Press, Richmond, VIC, pp 187–222

    Google Scholar 

  42. Limpus CJ (1992) The hawksbill turtle, Eretmochelys imbricata, in Queensland: population structure within a southern Great Barrier Reef feeding ground. Wildl Res 19:489–506. doi:10.1071/wr9920489

    Article  Google Scholar 

  43. Limpus CJ (2008) A biological review of Australian marine turtle species. The State of Queensland, Environmental Protection Agency, Brisbane

    Google Scholar 

  44. Limpus CJ, Limpus DJ (2003) Biology of the loggerhead turtle in western south Pacific Ocean foraging areas. In: Bolten AB, Witherington BE (eds) Loggerhead sea turtles. Smithsonian Institution, Washington, DC, pp 93–113

    Google Scholar 

  45. Limpus CJ, Reed PC (1985) The green turtles, Chelonia mydas, in Queensland: a preliminary description of the population structure in a coral reef feeding ground. In: Grigg G, Shine R, Ehmann H (eds) Biology of Australasian frogs and reptiles. Surrey Beatty in association with The Royal Zoological Society of New South Wales, New South Wales, pp 47–52

    Google Scholar 

  46. Limpus CJ, Limpus DJ, Arthur KE, Parmenter CJ (2005) Monitoring green turtle population dynamics in Shoalwater Bay: 2000–2004. Great Barrier Reef Marine Park Authority, Queensland

    Google Scholar 

  47. Lohmann KJ, Luschi P, Hays GC (2008) Goal navigation and island-finding in sea turtles. J Exp Mar Biol Ecol 356:83–95. doi:10.1016/j.jembe.2007.12.017

    Article  Google Scholar 

  48. Lohmann KJ, Lohmann CMF, Brothers JR, Putman NF (2013) Natal homing and imprinting in sea turtles. In: Wyneken J, Lohmann KJ, Musick JA (eds) The biology of sea turtles, vol 3. CRC Press, Boca Raton, FL, pp 59–78. doi:10.1201/b13895-4

    Google Scholar 

  49. Luschi P, Papi F, Liew HC, Chan EH, Bonadonna F (1996) Long-distance migration and homing after displacement in the green turtle (Chelonia mydas): a satellite tracking study. J Comp Physiol 178:447–452

    Article  Google Scholar 

  50. Luschi P, Åkesson S, Broderick A, Glen F, Godley B, Papi F, Hays G (2001) Testing the navigational abilities of ocean migrants: displacement experiments on green sea turtles (Chelonia mydas). Behav Ecol Sociobiol 50:528–534

    Article  Google Scholar 

  51. Miller JD (1997) Reproduction in sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles, vol 1. CRC Press, Boca Raton, FL, pp 51–81

    Google Scholar 

  52. Morreale SJ, Standora EA (2005) Western north Atlantic waters: crucial developmental habitat for Kemp’s ridley and loggerhead sea turtles. Chelonian Conserv Biol 4:872–882

    Google Scholar 

  53. Musick JA, Limpus CJ (1997) Habitat utilization and migration in juvenile sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles, vol 1. CRC Press, Boca Raton, FL, pp 137–163

    Google Scholar 

  54. NASA Earth Observations (2014) Sea surface temperature. EOS Project Science Office, NASA Goddard Space Flight Center. http://neo.sci.gsfc.nasa.gov. Accessed 6 Nov 2014

  55. Parker GA, Smith JM (1990) Optimality theory in evolutionary biology. Nature 348:27–33. doi:10.1038/348027a0

    Article  Google Scholar 

  56. Piper W (2011) Making habitat selection more “familiar”: a review. Behav Ecol Sociobiol 65:1329–1351. doi:10.1007/s00265-011-1195-1

    Article  Google Scholar 

  57. Plotkin P (2003) Adult migrations and habitat use. In: Lutz PL, Musick JA, Wyneken J (eds) The biology of sea turtles, vol 2. CRC Press, Boca Raton, FL, pp 225–241

    Google Scholar 

  58. R Core Team (2015) R: a language and environment for statistical computing (v. 3.1.2). R Foundation for Statistical Computing, Vienna

    Google Scholar 

  59. Sefick S (2015) Stream metabolism: a package for calculating single station metabolism from diurnal oxygen curves. R package v. 1.1.1. http://CRAN.R-project.org/package=StreamMetabolism. Accessed 3 Aug 2015

  60. Shimada T, Jones R, Limpus C, Hamann M (2012) Improving data retention and home range estimates by data-driven screening. Mar Ecol Prog Ser 457:171–180. doi:10.3354/meps09747

    Article  Google Scholar 

  61. Shimada T, Aoki S, Kameda K, Hazel J, Reich K, Kamezaki N (2014) Site fidelity, ontogenetic shift and diet composition of green turtles Chelonia mydas in Japan inferred from stable isotope analysis. Endanger Spec Res 25:151–164. doi:10.3354/esr00616

    Article  Google Scholar 

  62. Skaug H, Fournier D, Bolker B, Magnusson A, Nielsen A (2015) glmmADMB: generalized linear mixed models using AD model builder. R package v. 0.8.1. http://glmmadmb.r-forge.r-project.org. Accessed 3 Aug 2015

  63. Southwood AL, Reina RD, Jones VS, Jones DR (2003) Seasonal diving patterns and body temperatures of juvenile green turtles at Heron Island, Australia. Can J Zool 81:1014–1024. doi:10.1139/Z03-081

    Article  Google Scholar 

  64. Southwood AL, Reina RD, Jones VS, Speakman JR, Jones DR (2006) Seasonal metabolism of juvenile green turtles (Chelonia mydas) at Heron Island, Australia. Can J Zool 84:125–135. doi:10.1139/z05-185

    CAS  Article  Google Scholar 

  65. Spotila JR, O’Connor MP, Paladino FV (1997) Thermal biology. In: Lutz PL, Musick JA (eds) The biology of sea turtles, vol 1. CRC Press, Boca Raton, FL, pp 297–314

    Google Scholar 

  66. Stamps JA, Swaisgood RR (2007) Someplace like home: experience, habitat selection and conservation biology. Appl Anim Behav Sci 102:392–409. doi:10.1016/j.applanim.2006.05.038

    Article  Google Scholar 

  67. Zeileis A, Hothorn T (2002) Diagnostic checking in regression relationships. R News 2:7–10

    Google Scholar 

  68. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. doi:10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Environmental Research Program (NERP), Department of Environment and Heritage Protection of Queensland government (EHP), James Cook University (JCU), Gladstone Port Corporation Limited, GHD Australia, Healthy Waterways, Beldi consulting, Sea World Gold Coast Aquarium and Bundaberg Sugar. We are grateful to Reef HQ Aquarium, Australia Zoo Wildlife Hospital, and Underwater World Aquarium, for contributing satellite-tracking data of their rescued sea turtles to this study, and to M. Smith, K. Huff, C. Lacasse, and H. Campbell for their help in providing access to the data. We thank J. Limpus, D. Limpus, M. Savige, and numerous volunteers for their help in capturing and handling turtles, and P. Yates and A. Reside for their assistance in data analysis. G. Hays and an anonymous reviewer provided constructive comments that greatly improved an earlier version of this paper. T.S. was supported by NERP scholarship and Ito Foundation for International Education Exchange Scholarship. This research was conducted under the ethics permits SA212/11/395 of EHP and, A1229 and A1683 of JCU.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takahiro Shimada.

Additional information

Reviewed by undisclosed experts.

Responsible Editor: J.D.R. Houghton.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 263 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shimada, T., Limpus, C., Jones, R. et al. Sea turtles return home after intentional displacement from coastal foraging areas. Mar Biol 163, 8 (2016). https://doi.org/10.1007/s00227-015-2771-0

Download citation

Keywords

  • Green Turtle
  • Original Area
  • Utilisation Distribution
  • Loggerhead Turtle
  • Homing Behaviour