Advertisement

Marine Biology

, Volume 162, Issue 12, pp 2351–2362 | Cite as

Movements of the reef manta ray (Manta alfredi) in the Red Sea using satellite and acoustic telemetry

  • Camrin D. Braun
  • Gregory B. Skomal
  • Simon R. Thorrold
  • Michael L. Berumen
Original Paper

Abstract

Populations of mobulid rays are declining globally through a combination of directed fisheries and indirect anthropogenic threats. Understanding the movement ecology of these rays remains an important priority for devising appropriate conservation measures throughout the world’s oceans. We sought to determine manta movements across several temporal and spatial scales with a focus on quantifying site fidelity and seasonality in the northern Farasan Banks, Red Sea. We fitted manta rays with acoustic transmitters (n = 9) and pop-up satellite archival transmitting (PSAT) tags (n = 9), including four with GPS capability (Fastloc), during spring 2011 and 2012. We deployed an extensive array of acoustic receivers (n = 67) to record movements of tagged mantas in the study area. All acoustically tagged individuals traveled frequently among high-use receiver locations and reefs and demonstrated fidelity to specific sites within the array. Estimated and realized satellite tag data indicated regional movements <200 km from the tagging location, largely coastal residency, and high surface occupation. GPS-tagged individuals regularly moved within the coastal reef matrix up to ~70 km to the south but continued to return to the tagging area near the high-occupancy sites identified in the acoustic array. We also tested the accuracy of several geolocation models to determine the best approach to analyze our light-based satellite tag data. We documented significant errors in light-based movement estimates that should be considered when interpreting tracks derived from light-level geolocation, especially for animals with restricted movements through a homogenous temperature field. Despite some error in satellite tag positions, combining results from PSAT and acoustic tags in this study yielded a comprehensive representation of manta spatial ecology across several scales, and such approaches will, in the future, inform the design of appropriate management strategies for manta rays in the Red Sea and tropical regions worldwide.

Keywords

Global Position System Acoustic Telemetry Global Position System Position Global Position System Location Geolocation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank J. Cochran for useful discussion of the data and management of the acoustic array; Dream Divers for logistical support; T. Sinclair-Taylor, M. Priest, J. Cochran, M. Khalil, P. De La Torre, and the Reef Ecology Lab at King Abdullah University of Science and Technology (KAUST) for assistance in the field. Financial support was provided in part by KAUST baseline research funds (to MLB), KAUST award nos. USA00002 and KSA 00011 (to SRT), and the U.S. National Science Foundation (OCE 0825148 to SRT and GBS). The manuscript was improved by feedback from B. Jones and S. Kaartvedt.

References

  1. Alava MNR, Dolumbaló ERZ, Yaptinchay AA, Trono RB (2002) Fishery and trade of whale sharks and manta rays in the Bohol Sea, Philippines. IUCN, Gland and Cambridge, pp 132–148Google Scholar
  2. Antonius A, Bouchon C, Scheer G (1990) Corals of the eastern Red Sea. Smithsonian Institution Press, Washington, DCGoogle Scholar
  3. Berumen ML, Hoey AS, Bass WH et al (2013) The status of coral reef ecology research in the Red Sea. Coral Reefs 32:737–748CrossRefGoogle Scholar
  4. Berumen ML, Braun CD, Cochran JEM et al (2014) Movement patterns of juvenile whale sharks tagged at an aggregation site in the red sea. PLoS One 9:e103536. doi: 10.1371/journal.pone.0103536 CrossRefGoogle Scholar
  5. Bigelow HB, Schroeder WC (1953) Sawfishes, guitarfishes, skates and rays. Sears Foundation for Marine Research, Yale University Press, New Haven, CTGoogle Scholar
  6. Block BA, Dewar H, Blackwell SB et al (2001) Archival and pop-up satellite tagging of Atlantic bluefin tuna. Electronic tagging and tracking in marine fisheries. Springer, Berlin, pp 65–88CrossRefGoogle Scholar
  7. Bonfil R, Meyer M, Scholl MC et al (2005) Transoceanic migration, spatial dynamics, and population linkages of white sharks. Science 310:100–103. doi: 10.1126/Science.1114898 CrossRefGoogle Scholar
  8. Braun CD, Skomal GB, Thorrold SR, Berumen ML (2014) Diving behavior of the reef manta ray links coral reefs with adjacent deep pelagic habitats. PLoS One 9:e88170. doi: 10.1371/journal.pone.0088170 CrossRefGoogle Scholar
  9. Cagua FE, Berumen ML, Tyler EHM (2013) Topography and biological noise determine acoustic detectability on coral reefs. Coral Reefs 32:1123–1134CrossRefGoogle Scholar
  10. Cagua EF, Cochran JEM, Rohner CA et al (2015) Acoustic telemetry reveals cryptic residency of whale sharks. Bio Lett 11:20150092. doi: 10.1098/rsbl.2015.0092 CrossRefGoogle Scholar
  11. Carey FG, Scharold JV, Kalmijn AJ (1990) Movements of blue sharks (Prionace glauca) in depth and course. Mar Biol 106:329–342CrossRefGoogle Scholar
  12. Clark TB (2010) Abundance, home range, and movement patterns of manta rays (Manta alfredi, M. birostris) in Hawai’i. Dissertation, University of Hawai’i, Manoa, Hawai’i USAGoogle Scholar
  13. Couturier LIE, Jaine FRA, Townsend KA et al (2011) Distribution, site affinity and regional movements of the manta ray, Manta alfredi (Krefft, 1868), along the east coast of Australia. Mar Freshw Res 62:628–637. doi: 10.1071/Mf10148 CrossRefGoogle Scholar
  14. Couturier LI, Marshall AD, Jaine FR et al (2012) Biology, ecology and conservation of the Mobulidae. J Fish Biol 80:1075–1119. doi: 10.1111/j.1095-8649.2012.03264.x CrossRefGoogle Scholar
  15. Deakos MH (2010) Ecology and social behavior of a resident manta ray (Manta alfredi) population off Maui, Hawai’i. Dissertation, University of Hawai’i, Manoa, Hawai’i USAGoogle Scholar
  16. Deakos MH (2012) The reproductive ecology of resident manta rays (Manta alfredi) off Maui, Hawaii, with an emphasis on body size. Environ Biol Fish 94:443–456. doi: 10.1007/S10641-011-9953-5 CrossRefGoogle Scholar
  17. Deakos MH, Baker JD, Bejder L (2011) Characteristics of a manta ray Manta alfredi population off Maui, Hawaii and implications for management. Mar Ecol Prog Ser 420:245–260CrossRefGoogle Scholar
  18. Dewar H (2002) Preliminary report: Manta harvest in Lamakera. Report from the Pfleger Institute of Environmental Research and the Nature Conservancy, pp 3Google Scholar
  19. Dewar H, Mous P, Domeier M et al (2008) Movements and site fidelity of the giant manta ray, Manta birostris, in the Komodo Marine Park, Indonesia. Mar Biol 155:121–133. doi: 10.1007/S00227-008-0988-X CrossRefGoogle Scholar
  20. Dujon AM, Lindstrom RT, Hays GC (2014) The accuracy of Fastloc-GPS locations and implications for animal tracking. Methods Ecol Evol. doi: 10.1111/2041-210X.12286 CrossRefGoogle Scholar
  21. Dulvy NK, Baum JK, Clarke S et al (2008) You can swim but you can’t hide: the global status and conservation of oceanic pelagic sharks and rays. Aquat Conserv Mar Freshw Ecosyst 18:459–482. doi: 10.1002/aqc.975 CrossRefGoogle Scholar
  22. Ekstrom PA (2004) An advance in geolocation by light. Mem Natl Inst Polar Res 58:210–226Google Scholar
  23. Ferretti F, Worm B, Britten GL et al (2010) Patterns and ecosystem consequences of shark declines in the ocean. Ecol Lett 13:1055–1071Google Scholar
  24. Galuardi B, Royer F, Golet W et al (2010) Complex migration routes of Atlantic bluefin tuna (Thunnus thynnus) question current population structure paradigm. Can J Fish Aquat Sci 67:966–976. doi: 10.1139/F10-033 CrossRefGoogle Scholar
  25. Gladstone W (2000) The ecological and social basis for management of a Red Sea marine-protected area. Ocean Coast Manag 43:1015–1032. doi: 10.1016/S0964-5691(0)00070-3 CrossRefGoogle Scholar
  26. Gore MA, Rowat D, Hall J et al (2008) Transatlantic migration and deep mid-ocean diving by basking shark. Biol Lett 4:395–398CrossRefGoogle Scholar
  27. Graham RT, Witt MJ, Castellanos DW et al (2012) Satellite tracking of manta rays highlights challenges to their conservation. PLoS One 7:e36834. doi: 10.1371/journal.pone.0036834 CrossRefGoogle Scholar
  28. Greene CH, Block BA, Welch D et al (2009) Advances in conservation oceanography new tagging and tracking technologies and their potential for transforming the science underlying fisheries management. Oceanography 22:210–223CrossRefGoogle Scholar
  29. Grüss A, Kaplan DM, Guénette S et al (2011) Consequences of adult and juvenile movement for marine protected areas. Biol Conserv 144:692–702CrossRefGoogle Scholar
  30. Hill RD, Braun MJ (2001) Geolocation by light level. In: Electronic tagging and tracking in marine fisheries: proceedings of symposium on tagging and tracking marine fish with electronic devices. Springer, Dordrecht, pp 315–330Google Scholar
  31. Holdsworth JC, Sippel TJ, Block BA (2008) Near real time satellite tracking of striped marlin (Kajikia audax) movements in the Pacific Ocean. Mar Biol 156:505–514. doi: 10.1007/s00227-008-1104-y CrossRefGoogle Scholar
  32. IUCN (2015) The IUCN Red List of Threatened Species. Version 2015-3. http://www.iucnredlist.org. Accessed 1 Aug 2015
  33. Jaine F, Rohner C, Weeks S et al (2014) Movements and habitat use of reef manta rays off eastern Australia: offshore excursions, deep diving and eddy affinity revealed by satellite telemetry. Mar Ecol Prog Ser 510:73–86. doi: 10.3354/meps10910 CrossRefGoogle Scholar
  34. Ketchum JT, Hearn A, Klimley AP et al (2014) Inter-island movements of scalloped hammerhead sharks (Sphyrna lewini) and seasonal connectivity in a marine protected area of the eastern tropical Pacific. Mar Biol. doi: 10.1007/s00227-014-2393-y CrossRefGoogle Scholar
  35. Kneebone J, Chisholm J, Skomal GB (2012) Seasonal residency, habitat use, and site fidelity of juvenile sand tiger sharks Carcharias taurus in a Massachusetts estuary. Mar Ecol Prog Ser 471:165–181. doi: 10.3354/meps09989 CrossRefGoogle Scholar
  36. Kneebone J, Chisholm J, Skomal G (2014) Movement patterns of juvenile sand tigers (Carcharias taurus) along the east coast of the USA. Mar Biol 161:1149–1163. doi: 10.1007/s00227-014-2407-9 CrossRefGoogle Scholar
  37. Lam CH, Nielsen A, Sibert JR (2008) Improving light and temperature based geolocation by unscented Kalman filtering. Fish Res 91:15–25. doi: 10.1016/j.fishres.2007.11.002 CrossRefGoogle Scholar
  38. Lam CH, Nielsen A, Sibert JR (2010) Incorporating sea-surface temperature to the light-based geolocation model TrackIt. Mar Ecol Prog Ser 419:71–84. doi: 10.3354/meps08862 CrossRefGoogle Scholar
  39. Marshall AD, Dudgeon CL, Bennett MB (2011) Size and structure of a photographically identified population of manta rays Manta alfredi in southern Mozambique. Mar Biol 158:1111–1124. doi: 10.1007/S00227-011-1634-6 CrossRefGoogle Scholar
  40. McCauley DJ, DeSalles PA, Young HS et al (2014) Reliance of mobile species on sensitive habitats: a case study of manta rays (Manta alfredi) and lagoons. Mar Biol. doi: 10.1007/s00227-014-2478-7 CrossRefGoogle Scholar
  41. Musyl MK, Brill RW, Boggs CH et al (2003) Vertical movements of bigeye tuna (Thunnus obesus) associated with islands, buoys, and seamounts near the main Hawaiian Islands from archival tagging data. Fish Oceanogr 12:152–169. doi: 10.1046/j.1365-2419.2003.00229.x CrossRefGoogle Scholar
  42. Nielsen A, Sibert JR (2007) State–space model for light-based tracking of marine animals. Can J Fish Aquat Sci 64:1055–1068. doi: 10.1139/f07-064 CrossRefGoogle Scholar
  43. O’Malley MP, Lee-Brooks K, Medd HB (2013) The global economic impact of manta ray watching tourism. PLoS One 8:e65051. doi: 10.1371/journal.pone.0065051 CrossRefGoogle Scholar
  44. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  45. Racault M-F, Raitsos DE, Berumen ML et al (2015) Phytoplankton phenology indices in coral reef ecosystems: application to ocean-color observations in the Red Sea. Remote Sens Environ 160:222–234. doi: 10.1016/j.rse.2015.01.019 CrossRefGoogle Scholar
  46. Raitsos DE, Pradhan Y, Brewin RJW et al (2013) Remote sensing the phytoplankton seasonal succession of the Red Sea. PLoS One 8:e64909CrossRefGoogle Scholar
  47. Schindler DE, Essington TE, Kitchell JF et al (2002) Sharks and tunas: fisheries impacts on predators with contrasting life histories. Ecol Appl 12:735–748CrossRefGoogle Scholar
  48. Sequeira AMM, Mellin C, Meekan MG et al (2013) Inferred global connectivity of whale shark Rhincodon typus populations. J Fish Biol 82:367–389CrossRefGoogle Scholar
  49. Shen X, Jia F, Zhou J (2001) Anti-tumor effect of the preparation extracted from sea fish Manta birostris. Chin J Mar Drugs 20:35–43Google Scholar
  50. Sibert JR, Musyl MK, Brill RW (2003) Horizontal movements of bigeye tuna (Thunnus obesus) near Hawaii determined by Kalman filter analysis of archival tagging data. Fish Oceanogr 12:141–151CrossRefGoogle Scholar
  51. Sims DW (2010) Tracking and analysis techniques for understanding free-ranging shark movements and behavior. In: Carrier JC, Musick JA, Heithaus MR (eds) Sharks and their relatives II: biodiversity, adaptive physiology, and conservation. CRC Press, Boca Raton, pp 351–392CrossRefGoogle Scholar
  52. Skomal GB, Zeeman SI, Chisholm JH et al (2009) Transequatorial migrations by basking sharks in the western Atlantic Ocean. Curr Biol 19:1019–1022. doi: 10.1016/j.cub.2009.04.019 CrossRefGoogle Scholar
  53. Spaet JLY, Berumen ML (2015) Fish market surveys indicate unsustainable elasmobranch fisheries in the Saudi Arabian Red Sea. Fish Res 161:356–364. doi: 10.1016/j.fishres.2014.08.022 CrossRefGoogle Scholar
  54. Spaet JL, Thorrold SR, Berumen ML (2012) A review of elasmobranch research in the Red Sea. J Fish Biol 80:952–965. doi: 10.1111/j.1095-8649.2011.03178.x CrossRefGoogle Scholar
  55. Thorrold SR, Afonso P, Fontes J et al (2014) Extreme diving behavior in devil rays link surface waters and the deep ocean. Nat Commun. doi: 10.1038/ncomms5274
  56. Walter RP, Kessel ST, Alhasan N et al (2013) First record of living Manta alfredi × Manta birostris hybrid. Mar Biodivers. doi: 10.1007/s12526-013-0183-2 CrossRefGoogle Scholar
  57. Werry JM, Planes S, Berumen ML et al (2014) Reef-fidelity and migration of tiger sharks, Galeocerdo cuvier, across the Coral Sea. PLoS One 9:e83249. doi: 10.1371/journal.pone.0083249 CrossRefGoogle Scholar
  58. White WT, Giles J, Dharmadi, Potter IC (2006) Data on the bycatch fishery and reproductive biology of mobulid rays (Myliobatiformes) in Indonesia. Fish Res 82:65–73. doi: 10.1016/J.Fishres.08.008 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.MIT-WHOI Joint Program in OceanographyMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.MIT-WHOI Joint Program in OceanographyWoods Hole Oceanographic InstitutionWoods HoleUSA
  3. 3.Red Sea Research Center, Division of Biological and Environmental Science and EngineeringKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
  4. 4.Massachusetts Division of Marine FisheriesNew BedfordUSA
  5. 5.Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations