Marine Biology

, Volume 162, Issue 11, pp 2291–2303 | Cite as

Adaptive radiation of damselfishes (Perciformes, Pomacentridae) in the eastern Pacific

  • Rosalía Aguilar-Medrano
  • Héctor Reyes-Bonilla
  • P. David Polly
Original Paper

Abstract

Pomacentridae is one of the most abundant families in tropical and temperate rocky and coral reefs. They present an extraordinary diversity of habitat preferences, feeding, morphologies and behavior. The eastern Pacific is biogeographically isolated by the Isthmus of Panama and the eastern Pacific barrier. There is an agreement about the origin of the fauna of the Tropical Eastern Pacific, suggesting three main factors, mixture, dispersal and vicariance. In this study, by cluster analyses and parsimony analysis of endemism, the distribution of damselfishes within the eastern Pacific was analyzed to elucidate the provinciality and the history of their radiation. Six main provinces were found: (1) Easter Pacific equatorial islands, (2) North, (3) Center, (4) South, (5) California Province and (6) Clipperton. The Gulf of California and Galapagos islands are the two main centers of species richness. Three main factors limited the radiation of damselfishes: in islands, the distance of the island to the mainland and the size of the island; while in the mainland, the temperature appears to be the main barrier. Our results show the radiation process of Pomacentridae in the eastern Pacific as a dynamic dispersion system, which can be categorized in three main steps: (1) mixture and speciation of species with close affinity to west Atlantic ancestral stocks in the Central Province, (2) dispersion due to favorable conditions to Galapagos islands and Gulf of California and (3) the more complex and perhaps long, gradual dispersal and radiation to temperate areas and isolated or marginal environments.

Notes

Acknowledgments

Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico) funded the research of R. Aguilar-Medrano. The manuscript benefited from comments by E. Balart Páez, X. Moreno Sánchez, M. Taylor and one anonymous reviewer.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This study did not use organisms.

References

  1. Aagesen L, Szumik C, Zuloaga FO, Morrone O (2009) Biogeography of the South America highlands—recognizing the Altoandina, Puna, and Prepuna through the study of Poaceae. Cladistics 25:295–310CrossRefGoogle Scholar
  2. Aguilar-Aguilar R, Contreras-Medina R, Salgado-Maldonado G (2003) Parsimony analysis of endemicity (PAE) of Mexican hydrological basins based on helminth parasites of freshwater fishes. J Biogeogr 30(12):1861–1872CrossRefGoogle Scholar
  3. Aguilar-Aguilar R, Contreras-Medina R, Martínez-Aquino A, Salgado-Maldonado G, González-Zamora A (2005) Aplicación del análisis de parsimonia de endemismos (PAE) en los sistemas hidrológicos de México: Un ejemplo con helmintos parásitos de peces dulceacuícolas. In: Llorente J, Morrone JJ, (eds) Facultad de Ciencias, UNAM, México, DF, pp 227–239Google Scholar
  4. Aguilar-Medrano R, Frederich B, De Luna E, Balart EF (2011) Patterns of morphological evolution of the cephalic region in damselfishes (Perciformes: Pomacentridae) of the Eastern Pacific. Biol J Linn Soc 102:593–613CrossRefGoogle Scholar
  5. Aguilar-Medrano R, Frédérich B, Balart EF, De Luna E (2013) Diversification of the pectoral fin shape in damselfishes (Perciformes, Pomacentridae) of the Eastern Pacific. Zoomorphology 132:197–213CrossRefGoogle Scholar
  6. Allen GR (1991) Damselfishes of the world. Aquarium Systems, MelleGoogle Scholar
  7. Allen GR, Robertson DR (1998) Peces del Pacífico Oriental Tropical. CONABIO, Agrupación Sierra Madre y CemexGoogle Scholar
  8. Arias JS, Casagranda MD, Diaz Gómez JM (2010) A comparison of NDM and PAE using real data. Cladistics 26(2):204Google Scholar
  9. Atkinson D (1994) Temperature and organism size: a biological law for ectotherms. Adv Ecol Res 25:1–58CrossRefGoogle Scholar
  10. Bacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Bacon AA (2015) Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc Natl Acad Sci USA 112:6110–6115CrossRefGoogle Scholar
  11. Bellwood DR, Hughes TP (2001) Regional-scale assembly rules and biodiversity of coral reefs. Science 292:1532–1535CrossRefGoogle Scholar
  12. Bellwood DR, Wainwright PC (2002) The history and biogeography of fishes on coral reefs Capitulo 1. In: Sale PF (ed) Coral reef fishes Dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 5–32CrossRefGoogle Scholar
  13. Bellwood DR, van Herwerden L, Konow N (2004) Evolution and biogeography of marine angelfishes (Pisces: Pomacanthidae). Mol Phylogenet Evol 33:140–165CrossRefGoogle Scholar
  14. Bellwood DR, Klanten S, Cowman PF, Pratchett MS, Konow N, van Herwerden L (2010) Evolutionary history of the butterflyfishes (f: Chaetodontidae) and the rise of coral feeding fishes. J Evol Biol 23:335–349CrossRefGoogle Scholar
  15. Bergmann C (1847) Über die verhältnisse der wärmeökonomie der thiere zu ihrer grösse. Gött Stud 1847:1595–1708Google Scholar
  16. Bernardi G, Findley L, Rocha-Olivares A (2003) Vicariance and dispersal across Baja California in disjunct marine fish populations. Evolution 57:1599–1609CrossRefGoogle Scholar
  17. Boschi E (2000) Species of decapod crustaceans and their distribution in the American marine zoogeographic provinces. Rev Invest Des Pesq 13:7–136Google Scholar
  18. Briggs JC (1974) Marine zoogeography. McGraw-Hill, New YorkGoogle Scholar
  19. Briggs JC (1992) The marine East Indies: centre of origin? Global Ecol Biogeogr 2:149–156CrossRefGoogle Scholar
  20. Briggs JC (1999) Coincident biogeographic patterns: Indo-West Pacific Ocean. Evolution 53:326–335CrossRefGoogle Scholar
  21. Briggs JC (2003) Marine centres of origin as evolutionary engines. J Biogeogr 30:1–18CrossRefGoogle Scholar
  22. Brusca RC, Findley LT, Hastings PA, Hendrickx ME, Torre Cosio J, van der Heiden AM (2005) Macrofaunal Biodiversity in the Gulf of California. In: Cartron JLE, Ceballos G, Felger R (eds) Biodiversity, ecosystems and conservation in Northern Mexico. Oxford University Press, NY, pp 179–203Google Scholar
  23. Capone DG, Hutchins DA (2013) Microbial biogeochemistry of coastal upwelling regimes in a changing ocean. Nat Geosci 6:711–717CrossRefGoogle Scholar
  24. Carrasco A (2000) Renomination of the Galapagos marine reserve to the world heritage list (Extension to Galapagos List). United Nations Environment Programme (UNEP) and World Conservation Monitoring Centre (WCMC)Google Scholar
  25. Casagranda MD, Lizarralde de Grosso (2013) Areas of Endemism: Methodological and applied biogeographic contributions from South America. In: Silva-Opps M (ed) Current progress in biological research. http://www.intechopen.com/books/current-progress-in-biological-research
  26. Casagranda MD, Taher L, Szumik C (2012) Endemicity analysis, parsimony and biotic elements: a formal comparison using hypothetical distributions. Cladistics 1:1–10Google Scholar
  27. Castillo-Páez A, Sosa-Nishizaki O, Sandoval-Castillo J, Galván-Magaña F, Blanco-Parra MP, Rocha-Olivares A (2014) Strong population structure and shallow mitochondrial phylogeny in the banded guitarfish, Zapteryx exasperata (Jordan y Gilbert, 1880), from the Northern Mexican Pacific. J Hered 105:91–100CrossRefGoogle Scholar
  28. Clarke TA (1971) Territory boundaries, courtship, and social behavior in the garibaldi, Hypsypops rubicunda (Pomacentridae). Copeia 1971(2):295–299CrossRefGoogle Scholar
  29. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  30. Coates AG, Obando JA (1996) Geological evolution of the Central American Isthmus. In: Jackson JBC, Budd AF, Coates AG (eds) Evolution and environment in tropical America. University of Chicago Press, Chicago, pp 21–56Google Scholar
  31. Contreras-Medina R, Luna-Vega I, Morrone JJ (2007) Application of parsimony analysis of endemicity to Mexican gymnosperm distributions: grid-cells, biogeographical provinces and track analysis. Biol J Linn Soc 92:405–417CrossRefGoogle Scholar
  32. Cooper JG (1863) On new genera and species of California fishes-Number I. Proc Calif Acad Nat Sci 1st Ser 3:70–77Google Scholar
  33. Cooper WJ, Smith LL, Weastneat MW (2009) Exploring the radiation of a diverse reef fish family: phylogenetics of the damselfishes (Pomacentridae), with new classifications based on molecular analyses of all genera. Mol Phylogenet Evol 52:1–16CrossRefGoogle Scholar
  34. Cowman PF, Bellwood DR (2012) The historical biogeography of coral reef fishes: global patterns of origination and dispersal. J Biogeogr 40(2):209–224CrossRefGoogle Scholar
  35. Cracraft J (1991) Patterns of diversification within continental biotas: hierarchical congruence among the areas of endemism of Australian vertebrates. Aust Syst Bot 4:211–227CrossRefGoogle Scholar
  36. Cracraft J (1994) Species diversity, biogeography and the evolution of biotas. Am Zool 34:33–47CrossRefGoogle Scholar
  37. Dana TF (1975) Develop of contemporary Eastern Pacific coral reefs. Mar Biol 33:355–374CrossRefGoogle Scholar
  38. De Grave S (2001) Biogeography of Indo-Pacific Potoniinae (Crustacea, Decapoda): a PAE analysis. J Biogeogr 28:1239–1254CrossRefGoogle Scholar
  39. Domingues VS, Bucciarelli G, Almada VC, Bernardi G (2005) Historical colonization and demography of the Mediterranean damselfish, Chromis chromis. Mol Ecol 14:4051–4063CrossRefGoogle Scholar
  40. Drew J, Barber PH (2009) Sequential cladogenesis of the reef fish Pomacentrus moluccensis (Pomacentridae) supports the peripheral origin of marine biodiversity in the Indo-Australian archipelago. Mol Phyl Evol 53:335–339CrossRefGoogle Scholar
  41. Duque-Caro H (1990) Neogene stratigraphy, paleoeceanography and paleobiogeography in northwest South America and the evolution of Panama seaway. Palaeogeogr Palaeoclimatol Palaeoecol 7(3–4):203–234CrossRefGoogle Scholar
  42. Ekman S (1953) Zoogeography of the sea. Sidgwick & Jackson, LondonGoogle Scholar
  43. Eschmeyer WN (2015) Catalog of fishes: genera, species, references (http://research.calacademy.org/research/ichthyology/catalog/fishcatmain.asp). Accessed Jun, 2015
  44. Fenberg PB, Posbic K, Hellberg ME (2014) Historical and recent processes shaping the geographic range of a rocky intertidal gastropod: phylogeography, ecology, and habitat availability. Ecol Evol 4(16):3244–3255CrossRefGoogle Scholar
  45. Frederich B, Sorenson L, Santini F, Slater GJ, Alfaro ME (2013) Iterative ecological radiation and convergence during the evolutionary history of damselfishes (Pomacentridae). Am Nat 181(1):94–113CrossRefGoogle Scholar
  46. Glynn PW, Ault JS (2000) A biogeographic analysis and review of the far Eastern Pacific coral reef region. Coral Reefs 19:1–23CrossRefGoogle Scholar
  47. Goloboff P, Farris J, Nixon K (2003) T.N.T. Tree analyses using new technology. Available at www.zmuc.dk/public/phylogeny
  48. Gorman GC, Kim YJ (1977) Genotypic evolution in the face of phenotypic conservativeness. Abudefduf (Pomacentridae) from the Atlantic and Pacific sides of Panáma. Copeia 1977:694–697CrossRefGoogle Scholar
  49. Goswami A, Polly PD (2010) Methods for studying morphological integration, modularity and covariance evolution. In: Alroy J, Hunt G (eds) Quantitative methods in paleobiology. The Paleontological Society Papers Series vol 16, pp 213 − 243Google Scholar
  50. Greenfield DW, Woods LP (1980) Review of the deep-bodied species of Chromis (Pisces: Pomacentridae) from the Eastern Pacific, with descriptions of three new species. Copeia 1980:626–641CrossRefGoogle Scholar
  51. Grigg RW, Hey R (1992) Paleoceanography of the tropical Eastern Pacific Ocean. Science 255:172–178CrossRefGoogle Scholar
  52. Grove JS, Gerzon D, Saa MD, Strang C (1986) Distribución y ecología de la familia Pomacentridae (Pisces) en las Islas Galapagos. Rev Biol Trop 34(1):127–140Google Scholar
  53. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: palentological statistics software package for education and data analysis. Paleo Electron 4(1):9Google Scholar
  54. Hastings PA (2000) Biogeography of the tropical eastern Pacific: distribution and phylogeny of chaenopsid fishes. Zool J Linn Soc 128:319–335CrossRefGoogle Scholar
  55. Holt JW, Holt EW, Stock JM (2000) An age constraint on Gulf of California rifting from the Santa Rosalia Basin, Baja California Sur, Mexico. Geol Soc Am Bull 112:540–549CrossRefGoogle Scholar
  56. Huang X-L, Qiao G-X, Lei F-M (2010) Use of parsimony analysis to identify areas of endemism of Chinese birds: implications for conservation and biogeography. Int J Mol Sci 11(5):2097–2108CrossRefGoogle Scholar
  57. Kauffman EG, Fagerstrom JA (1993) The Phanerozoic evolution of reef diversity. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities: a historical and geographical perspective. University of Chicago Press, Chicago, pp 315–329Google Scholar
  58. Kaufman LS, Liem KF (1982) Fishes of the suborder Labroidei (Pisces:Perciformes): phylogeny, ecology, and evolutionary significance. Breviora 472:1–19Google Scholar
  59. Kiessling W (2009) Geological and biological controls on the evolution of reefs. Annu Rev Ecol Evol Syst 40:173–192CrossRefGoogle Scholar
  60. Kosman E, Leonard KJ (2005) Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol Ecol 14(2):415–424CrossRefGoogle Scholar
  61. Kuiper FK, Fisher L (1975) A Monte Carlo comparison of six clustering procedures. Biometrics 31:777–783CrossRefGoogle Scholar
  62. Kulbicki M, Parravicini V, Bellwood DR, Arias-Gonzalez E, Chabanet P, Floeter SR, Friedlander A, McPherson J, Myers RE, Vigliola L, Mouillot D (2013) Global biogeography of reef fishes: a hierarchical quantitative delineation of regions. PLoS ONE 8(12):e81847CrossRefGoogle Scholar
  63. Lauder GV, Liem KF (1983) The evolution and interrelationships of the actinopterygian fishes. Bull Mus Comp Zool 150:95–197Google Scholar
  64. Lessios HA, Robertson DR (2006) Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier. Proc R Soc Lond B 273:2201–2208CrossRefGoogle Scholar
  65. Levitus S, Boyer TP (1994) World Ocean Atlas. Vol. 4: Temperature. NOAA Atlas NESDIS 4. U.S. Gov. Printing Office, Washington, DCGoogle Scholar
  66. Lluch-Cota SE, Aragón-Noriega EA, Arreguín-Sánchez F, Aurioles-Gamboa D, Bautista-Romero JJ, Brusca RC, Cervantes-Duarte R, Cortés-Altamirano R, Del-Monte-Luna P, Esquivel-Herrera A, Fernández G, Hendrickx ME, Hernández-Vázquez S, Herrera-Cervantes H, Kharu M, Lavin M, Lluch-Belda D, Lluch-Cota BD, López Martínez J, Marinone SG, Nevárez-Martínez MO, Ortega-García S, Palacios-Castro E, Parés-Sierra A, Ponce-Díaz G, Ramírez-Rodríguez M, Salinas-Zavala CA, Schwartzlose RA, Sierra-Beltrán AP (2007) The Gulf of California: review of ecosystem status and sustainability challenges. Prog Oceanogr 73:1–26CrossRefGoogle Scholar
  67. Mann KH (1973) Seaweeds: their productivity and strategy for growth. Science 182:975–981CrossRefGoogle Scholar
  68. Mavrodiev EV, Laktionov AP, Cellinese N (2012) A maximum likelihood approach to generate hypotheses on the evolution and historical biogeography in the Lower Volga Valley regions (southwest Russia). Ecol Evol 2(7):1765–1779CrossRefGoogle Scholar
  69. McCabe JD, Olson BJ (2015) Landscape-scale habitat availability, and not local geography, predicts migratory landbird stopover across the Gulf of Maine. J Avian Biol 46:395–405CrossRefGoogle Scholar
  70. McManus JW (1985) Marine speciation, tectonics, and sealevel changes in south-east Asia. Proc Fifth Int Coral Reef Symp 1984(4):133–138Google Scholar
  71. Mojena R (1977) Hierarchical grouping methods and stopping rules: an evaluation. Comparative Journal 20:359–363CrossRefGoogle Scholar
  72. Mora C, Chittaro PM, Sale PF, Kritzer JP, Ludsin SA (2003) Patterns and processes in reef fish diversity. Nature 421:933–936CrossRefGoogle Scholar
  73. Morrone JJ, Crisci JV (1995) Historical biogeography: introduction to methods. Annu Rev Ecol Evol Syst 26:373–401CrossRefGoogle Scholar
  74. Munday PL, Jones GP (1998) The ecological implications of small size among coral-reef fishes. Oceanogr Mar Biol Ann Rev 36:373–411Google Scholar
  75. Muss A, Robertson DR, Stepien CA, Wirtz P, Bowen BW (2001) Phylogeography of Ophioblennius: the role of ocean currents and geography in reef fish evolution. Evolution 55:561–572CrossRefGoogle Scholar
  76. Pequeño G, Vargas L, Riedemann A (2005) La castañeta Chromis crusma (Valenciennes, 1833) en la costa de Valdivia, con comentarios sobre el género Chromis Cuvier, 1814, en aguas chilenas (Osteichthyes: Pomacentridae). Invemar 33(001):101–107Google Scholar
  77. Quenouille B, Bermingham E, Planes S (2004) Molecular systematics of the damselfishes (Teleostei: Pomacentridae): Bayesian phylogenetic analyses of mitochondrial and nuclear DNA sequences. Mol Phyl Evol 31:62–68CrossRefGoogle Scholar
  78. Ray C (1960) The application of Bergmann’s and Allen’s rules to poikilotherms J Morph 106:85–108Google Scholar
  79. Riddle BR, Hafner DJ (2006) Phylogeography in historical biogeography: investigating the biogeographic histories of populations, species, and young biotas. In: Ebach MC, Tangney RS (eds) Biogeography in a changing world. CRC Press, Boca Raton, pp 161–176Google Scholar
  80. Riddle BR, Hafner DJ, Alexander LF, Jaeger JR (2000) Cryptic vicariance in the historical assembly of a Baja California Peninsular Desert biota. Proc Natl Acad Sci USA 97:14438–14443CrossRefGoogle Scholar
  81. Robertson DR, Allen GR (1996) Zoogeography of the shoresh fauna of Clipperton Atoll. Coral Reefs 15:121–131CrossRefGoogle Scholar
  82. Robertson DR, Allen GR (2015) Shorefishes of the Tropical Eastern Pacific: online information system. Version 2.0 Smithsonian Tropical Research Institute, Balboa, PanamáGoogle Scholar
  83. Robertson DR, Cramer KL (2009) Shore fishes and biogeographic subdivisions of the Tropical Eastern Pacific. Mar Ecol Progr Ser 380:1–17CrossRefGoogle Scholar
  84. Rosen BR (1988) From fossils to earth history: applied historical biogeography. In: Myers AA, Giller PS (eds) Analytical biogeography: an integrated approach to the study of animal and plant distributions. Chapman and Hall, London, pp 437–481CrossRefGoogle Scholar
  85. Sibly RM, Atkinson D (1994) How rearing temperature affects optimal adult size in ectotherms. Funct Ecol 8:486–493CrossRefGoogle Scholar
  86. Sneath P, Sokal R (1973) Numerical taxonomy: the principles and practice of numerical classification. W.H. Freeman, San FranciscoGoogle Scholar
  87. Sokal RR, Rohlf FJ (1962) The comparisons of dendrograms by objective methods. Taxon 11:33–40CrossRefGoogle Scholar
  88. Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57:573–583CrossRefGoogle Scholar
  89. Steeves TE, Anderson J, Friesen L (2005) The Isthmus of Panama: a major physical barrier to gene flow in a highly mobile pantropical seabird. J Evol Biol 18:1000–1008CrossRefGoogle Scholar
  90. Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459CrossRefGoogle Scholar
  91. Stephens JS, Larson RJ, Pondella DJ (2006) Rocky reefs and kelp beds. In: Allen LG, Pondella DJ, Horn MH (eds) The ecology of marine fishes: California and adjacent waters. University of California Press, Berkley, pp 227–250Google Scholar
  92. Stiassny MLJ (1981) The phyletic status of the family Cichlidae: a comparative anatomical investigation. Neth J Zool 31:275–314CrossRefGoogle Scholar
  93. Streelman JT, Alfaro M, Westneat MW, Bellwood DR, Karl SA (2002) Evolutionary history of the parrotfishes: biogeography, ecomorphology and comparative diversity. Evolution 56:961–971CrossRefGoogle Scholar
  94. Szumik C, Aagesen L, Casagranda D, Arzamendia V, Baldo D, Claps L, Cuezzo F, Díaz Gómez J, Giannini N, Goloboff P, Gramajo C, Kopuchian C, Kretzchsmar S, Lizarralde de Grosso M, Molina A, Mollerach M, Navarro F, Sandoval M, Pereyra V, Scrocchi G, Zuloaga F (2012) Detecting areas of endemism with a taxonomically diverse data set: plants, mammals, reptiles, amphibians, birds and insects from Argentina. Cladistics 28:317–329CrossRefGoogle Scholar
  95. Tang KL (2001) Phylogenetic relationships among damselfishes (Teleostei:Pomacentridae) as determined by mitochondrial DNA data. Copeia 2001(3):591–601CrossRefGoogle Scholar
  96. Walker BW (1960) The distribution and affinities of the marine fish fauna of the Gulf of California. Syst Zool 9:123–133CrossRefGoogle Scholar
  97. Ward J (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244CrossRefGoogle Scholar
  98. Williams ST, Duda TF Jr (2008) Did tectonic activity stimulation Oligo-Miocene speciation in the Indo-West Pacific? Evolution 62:1618–1634CrossRefGoogle Scholar
  99. Wood S, Paris CB, Ridgwell A, Hendy EJ (2014) Modelling dispersal and connectivity of broadcast spawning corals at the global scale. Global Ecol Biogeogr 23:1–11CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Rosalía Aguilar-Medrano
    • 1
    • 2
  • Héctor Reyes-Bonilla
    • 3
  • P. David Polly
    • 4
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Instituto de Ecología AplicadaUniversidad Autónoma de TamaulipasCiudad VictoriaMexico
  3. 3.Departamento Académico de Biología MarinaUniversidad Autónoma de Baja California SurLa PazMexico
  4. 4.Department of Geological Sciences, Biology, and AnthropologyIndiana UniversityBloomingtonUSA

Personalised recommendations