Advertisement

Marine Biology

, Volume 162, Issue 12, pp 2471–2479 | Cite as

Low feeding preference of native herbivores for the successful non-native seaweed Heterosiphonia japonica

  • Josefin Sagerman
  • Swantje Enge
  • Henrik Pavia
  • Sofia A. Wikström
Invasive Species - Original paper
Part of the following topical collections:
  1. Invasive Species

Abstract

Non-native seaweeds constitute a conspicuous component of many benthic coastal communities. Seaweed invaders are known to significantly affect invaded communities, but relatively little is known about the mechanisms underlying their success. In this study, we explored the feeding preferences of three generalist herbivores for the successful non-native red alga Heterosiphonia japonica and native seaweed competitors. The experiments were conducted on the Swedish Skagerrak coast (58°52′N, 11°08′E) from July to August. Additionally, chemical and physical traits of the seaweeds were assessed to mechanistically explain herbivore preferences. The results showed that H. japonica was of low preference to native herbivores and that this was most likely explained by chemical properties of the invader. We were, however, not able to determine whether the low preference was caused by deterrent metabolites or low nutritional quality. We conclude that herbivore avoidance may be important for the survival and success of H. japonica in the introduced range and that efficient means of escaping herbivory may be a common feature of invaders in seaweed communities.

Keywords

Invasion Success Generalist Herbivore Native Herbivore Ectocarpus Siliculosus Native Seaweed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank G. Cervin, G. M. Nylund, E. Bergvall and F. Baumgartner for field assistance. We also want to thank the staff at the Tjärnö Laboratory (Sven Lovén Centre for Marine Sciences) for their hospitality and practical assistance. We thank F. Baumgartner and two anonymous reviewers for helpful comments that helped improve the manuscript. The work was supported by grants from the Royal Swedish Academy of Sciences (to J. S.) and the Swedish Research Council Formas through contract no. 217-2007-534 (to S. A. W.) and by the Swedish Research Council VR through contract no. 621-2011-5630 (to H. P.).

References

  1. Agrawal AA, Kotanen PM, Mitchell CE, Power AG, Godsoe W, Klironomos J (2005) Enemy release? An experiment with congeneric plant pairs and diverse above-and belowground enemies. Ecology 86:2979–2989. doi: 10.1890/05-0219 CrossRefGoogle Scholar
  2. Andersson S, Engdahl A (2009) Mätkampanj 2009. Gullmarsfjorden, Askeröfjorden-Marstrandsfjorden. Marine Monitoring AB, LysekilGoogle Scholar
  3. Andersson S, Engdahl A, Asplund M (2010) Bohuskustens vattenvårdsförbund Makroalger i Brofjorden 2009. Marine Monitoring AB, LysekilGoogle Scholar
  4. Bjærke MR, Rueness J (2004) Effects of temperature and salinity on growth, reproduction and survival in the introduced red alga Heterosiphonia japonica (Ceramiales, Rhodophyta). Bot Mar 47:373–380. doi: 10.1515/BOT.2004.055 CrossRefGoogle Scholar
  5. Breeman AM (1988) Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: experimental and phenological evidence. Helgoländer Meeresunters 42:199–241. doi: 10.1007/BF02366043 CrossRefGoogle Scholar
  6. Britton-Simmons KH (2004) Direct and indirect effects of the introduced alga Sargassum muticum on benthic, subtidal communities of Washington State, USA. Mar Ecol Prog Ser 277:61–78CrossRefGoogle Scholar
  7. Cacabelos E, Olabarria C, Incera M, Troncoso JS (2010) Do grazers prefer invasive seaweeds? J Exp Mar Biol Ecol 393:182–187. doi: 10.1016/j.jembe.2010.07.024 CrossRefGoogle Scholar
  8. Cincotta CL, Adams JM, Holzapfel C (2009) Testing the enemy release hypothesis: a comparison of foliar insect herbivory of the exotic Norway maple (Acer platanoides L.) and the native sugar maple (A. saccharum L.). Biol Invasions 11:379–388. doi: 10.1007/s10530-008-9255-9 CrossRefGoogle Scholar
  9. Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  10. Cruz-Rivera E, Hay ME (2001) Macroalgal traits and the feeding and fitness of an herbivorous amphipod: the roles of selectivity, mixing, and compensation. Mar Ecol Prog Ser 218:249–266. doi: 10.3354/meps218249 CrossRefGoogle Scholar
  11. Drouin A, McKindsey CW, Johnson LE (2011) Higher abundance and diversity in faunal assemblages with the invasion of Codium fragile ssp. fragile in eelgrass meadows. Mar Ecol Prog Ser 424:105–117. doi: 10.3354/meps08961 CrossRefGoogle Scholar
  12. Duffy JE, Hay ME (1991) Food and shelter as determinants of food choice by an herbivorous marine amphipod. Ecology 72:1286–1298. doi: 10.2307/1941102 CrossRefGoogle Scholar
  13. Duffy JE, Hay ME (2000) Strong impacts of grazing amphipods on the organization of a benthic community. Ecol Monogr 70:237–263. doi: 10.2307/2657176 CrossRefGoogle Scholar
  14. Elger A, Willby NJ (2003) Leaf dry matter content as an integrative expression of plant palatability: the case of freshwater macrophytes. Funct Ecol 17:58–65. doi: 10.1046/j.1365-2435.2003.00700.x CrossRefGoogle Scholar
  15. Elton C (1958) The ecology of invasions by animals and plants. Methuen, LondonCrossRefGoogle Scholar
  16. Enge S, Nylund GM, Harder T, Pavia H (2012) An exotic chemical weapon explains low herbivore damage in an invasive alga. Ecology 93:2736–2745. doi: 10.1890/12-0143.1 CrossRefGoogle Scholar
  17. Enge S, Nylund GM, Pavia H (2013) Native generalist herbivores promote invasion of a chemically defended seaweed via refuge-mediated apparent competition. Ecol Lett 16:487–492. doi: 10.1111/ele.12072 CrossRefGoogle Scholar
  18. Gollan JR, Wright JT (2006) Limited grazing pressure by native herbivores on the invasive seaweed Caulerpa taxifolia in a temperate Australian estuary. Mar Freshw Res 57:685–694. doi: 10.1071/MF05253 CrossRefGoogle Scholar
  19. Gribben PE, Byers JE, Clements M, McKenzie LA, Steinberg PD, Wright JT (2009) Behavioural interactions between ecosystem engineers control community species richness. Ecol Lett 12:1127–1136. doi: 10.1111/j.1461-0248.2009.01366.x CrossRefGoogle Scholar
  20. Grosholz E (2002) Ecological and evolutionary consequences of coastal invasions. Trends Ecol Evol 17:22–27. doi: 10.1016/S0169-5347(01)02358-8 CrossRefGoogle Scholar
  21. Hacker SD, Steneck RS (1990) Habitat architecture and the abundance and body-size-dependent habitat selection of a phytal amphipod. Ecology 71:2269–2285. doi: 10.2307/1938638 CrossRefGoogle Scholar
  22. Hammann M, Wang G, Rickert E, Boo SM, Weinberger F (2013) Invasion success of the seaweed Gracilaria vermiculophylla correlates with low palatability. Mar Ecol Prog Ser 486:93–103CrossRefGoogle Scholar
  23. Han X, Dendy SP, Garrett KA, Fang L, Smith MD (2008) Comparison of damage to native and exotic tallgrass prairie plants by natural enemies. Plant Ecol 198:197–210. doi: 10.1007/s11258-008-9395-0 CrossRefGoogle Scholar
  24. Hay ME (1991) Marine-terrestrial contrasts in the ecology of plant chemical defenses against herbivores. Trends Ecol Evol 6:362–365. doi: 10.1016/0169-5347(91)90227-O CrossRefGoogle Scholar
  25. Husa V, Sjøtun K, Lein TE (2004) The newly introduced species Heterosiphonia japonica Yendo (Dasyaceae, Rhodophyta): geographical distribution and abundance at the Norwegian southwest coast. Sarsia 89:211–217. doi: 10.1080/00364820410006600 CrossRefGoogle Scholar
  26. Jormalainen V, Honkanen T, Heikkilä N (2001) Feeding preferences and performance of a marine isopod on seaweed hosts: cost of habitat specialization. Mar Ecol Prog Ser 220:219–230CrossRefGoogle Scholar
  27. Jormalainen V, Koivikko R, Ossipov V, Lindqvist M (2011) Quantifying variation and chemical correlates of bladderwrack quality—herbivore population makes a difference. Funct Ecol 25:900–909. doi: 10.1111/j.1365-2435.2011.01841.x CrossRefGoogle Scholar
  28. Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170. doi: 10.1016/S0169-5347(02)02499-0 CrossRefGoogle Scholar
  29. Kraufvelin P, Salovius S, Christie H et al (2006) Eutrophication-induced changes in benthic algae affect the behaviour and fitness of the marine amphipod Gammarus locusta. Aquat Bot 84:199–209. doi: 10.1016/j.aquabot.2005.08.008 CrossRefGoogle Scholar
  30. Lotze HK, Lenihan HS, Bourque BJ et al (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–1809. doi: 10.1126/science.1128035 CrossRefGoogle Scholar
  31. Manly BF (1991) Randomization and Monte Carlo methods in biology. Chapman and Hall, LondonCrossRefGoogle Scholar
  32. Maron JL, Vilà M (2001) When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypothesis. Oikos 95:361–373CrossRefGoogle Scholar
  33. Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161CrossRefGoogle Scholar
  34. Monteiro CA, Engelen AH, Santos ROP (2009) Macro- and mesoherbivores prefer native seaweeds over the invasive brown seaweed Sargassum muticum: a potential regulating role on invasions. Mar Biol 156:2505–2515. doi: 10.1007/s00227-009-1275-1 CrossRefGoogle Scholar
  35. Moy FE, Christie H (2012) Large-scale shift from sugar kelp (Saccharina latissima) to ephemeral algae along the south and west coast of Norway. Mar Biol Res 8:309–321. doi: 10.1080/17451000.2011.637561 CrossRefGoogle Scholar
  36. Naylor E (1955) The diet and feeding mechanism of Idotea. J Mar Biol Assoc UK 34:347–355CrossRefGoogle Scholar
  37. Nejrup LB, Pedersen MF, Vinzent J (2012) Grazer avoidance may explain the invasiveness of the red alga Gracilaria vermiculophylla in Scandinavian waters. Mar Biol 159:1–10. doi: 10.1007/s00227-012-1959-9 CrossRefGoogle Scholar
  38. Newton C, Bracken MES, McConville M, Rodrigue K, Thornber CS (2013) Invasion of the red seaweed Heterosiphonia japonica spans biogeographic provinces in the western North Atlantic Ocean. PLoS ONE 8:e62261. doi: 10.1371/journal.pone.0062261 CrossRefGoogle Scholar
  39. Nicotri ME (1980) Factors involved in herbivore food preference. J Exp Mar Biol Ecol 42:13–26. doi: 10.1016/0022-0981(80)90163-X CrossRefGoogle Scholar
  40. Pasquini C, De Oliveira WA (1985) Monosegmented system for continuous flow analysis. Spectrophotometric determination of chromium (VI), ammonia and phosphorus. Anal Chem 57:2575–2579. doi: 10.1021/ac00290a033 CrossRefGoogle Scholar
  41. Pavia H, Carr H, Åberg P (1999) Habitat and feeding preferences of crustacean mesoherbivores inhabiting the brown seaweed Ascophyllum nodosum (L.) Le Jol. and its epiphytic macroalgae. J Exp Mar Biol Ecol 236:15–32. doi: 10.1016/S0022-0981(98)00191-9 CrossRefGoogle Scholar
  42. Peterson CH, Renaud PE (1989) Analysis of feeding preference experiments. Oecologia 80:82–86. doi: 10.1007/BF00789935 CrossRefGoogle Scholar
  43. Poore AGB, Campbell AH, Coleman RA et al (2012) Global patterns in the impact of marine herbivores on benthic primary producers. Ecol Lett 15:912–922. doi: 10.1111/j.1461-0248.2012.01804.x CrossRefGoogle Scholar
  44. Sagerman J, Enge S, Pavia H, Wikström SA (2014) Divergent ecological strategies determine different impacts on community production by two successful non-native seaweeds. Oecologia 175:937–946. doi: 10.1007/s00442-014-2938-2 CrossRefGoogle Scholar
  45. Scheibling RE, Gagnon P (2006) Competitive interactions between the invasive green alga Codium fragile ssp. tomentosoides and native canopy-forming seaweeds in Nova Scotia(Canada). Mar Ecol Prog Ser 325:1–14CrossRefGoogle Scholar
  46. Sjøtun K, Husa V, Peña V (2008) Present distribution and possible vectors of introductions of the alga Heterosiphonia japonica (Ceramiales, Rhodophyta) in Europe. Aquat Invasions 3:377–394. doi: 10.3391/ai.2008.3.4.3 CrossRefGoogle Scholar
  47. Sumi CB, Scheibling RE (2005) Role of grazing by sea urchins Strongylocentrotus droebachiensis in regulating the invasive alga Codium fragile ssp. tomentosoides in Nova Scotia. Mar Ecol Prog Ser 292:203–212CrossRefGoogle Scholar
  48. Thornber CS, Kinlan BP, Graham MH, Stachowicz JJ (2004) Population ecology of the invasive kelp Undaria pinnatifida in California: environmental and biological controls on demography. Mar Ecol Prog Ser 268:69–80CrossRefGoogle Scholar
  49. Tomas F, Box A, Terrados J (2011) Effects of invasive seaweeds on feeding preference and performance of a keystone Mediterranean herbivore. Biol Invasions 13:1559–1570. doi: 10.1007/s10530-010-9913-6 CrossRefGoogle Scholar
  50. Trowbridge CD (1995) Establishment of the green alga Codium fragile ssp. tomentosoides on New Zealand rocky shores: current distribution and invertebrate grazers. J Ecol 83:949–965. doi: 10.2307/2261177 CrossRefGoogle Scholar
  51. Van den Hoek C (1982) A taxonomic revision of the American species of Cladophora (Chlorophyceae) in North-Atlantic Ocean and their geographic distribution. North-Holland Publishing Company, AmsterdamGoogle Scholar
  52. Vaz-Pinto F, Olabarria C, Arenas F (2014) Ecosystem functioning impacts of the invasive seaweed Sargassum muticum (Fucales, Phaeophyceae). J Phycol 50:108–116. doi: 10.1111/jpy.12136 CrossRefGoogle Scholar
  53. Wallentinus I, Nyberg CD (2007) Introduced marine organisms as habitat modifiers. Mar Pollut Bull 55:323–332. doi: 10.1016/j.marpolbul.2006.11.010 CrossRefGoogle Scholar
  54. Wikström SA, Steinarsdóttir MB, Kautsky L, Pavia H (2006) Increased chemical resistance explains low herbivore colonization of introduced seaweed. Oecologia 148:593–601. doi: 10.1007/s00442-006-0407-2 CrossRefGoogle Scholar
  55. Williams S, Smith J (2007) A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annu Rev Ecol Evol Syst 38:327–359. doi: 10.1146/annurev.ecolsys.38.091206.095543 CrossRefGoogle Scholar
  56. Wong PK, Liang Y, Liu NY, Qiu J-W (2010) Palatability of macrophytes to the invasive freshwater snail Pomacea canaliculata: differential effects of multiple plant traits. Freshw Biol 55:2023–2031. doi: 10.1111/j.1365-2427.2010.02458.x CrossRefGoogle Scholar
  57. Worm B, Lotze HK, Sommer U (2001) Algal propagule banks modify competition, consumer and resource control on Baltic rocky shores. Oecologia 128:281–293. doi: 10.1007/s004420100648 CrossRefGoogle Scholar
  58. Worm B, Barbier EB, Beaumont N et al (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790. doi: 10.1126/science.1132294 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Josefin Sagerman
    • 1
  • Swantje Enge
    • 2
  • Henrik Pavia
    • 2
  • Sofia A. Wikström
    • 1
    • 3
  1. 1.Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
  2. 2.Department of Biological and Environmental Sciences-TjärnöUniversity of GothenburgStrömstadSweden
  3. 3.Baltic Sea CentreStockholm UniversityStockholmSweden

Personalised recommendations