Advertisement

Marine Biology

, Volume 162, Issue 9, pp 1913–1921 | Cite as

The squat lobster Pleuroncodes monodon tolerates anoxic “dead zone” conditions off Peru

  • Rainer KikoEmail author
  • Helena Hauss
  • Marcus Dengler
  • Stefan Sommer
  • Frank Melzner
Short note

Abstract

The squat lobster Pleuroncodes monodon is a key species of the highly productive, but oxygen-poor upwelling system of the Eastern Tropical South Pacific. Observations of P. monodon in the water column off Peru have led to the hypothesis that anoxic conditions force this otherwise primarily benthic species to adopt a pelagic lifestyle. Here we show that off Peru, P. monodon can be found in the oxygenated surface water, but also on the anoxic seafloor. Our physiological experiments demonstrate that juvenile and adult specimens have a very low critical respiratory pO2 of 0.5 kPa and that adults survive anoxia for 30.5–70.5 h. Anoxic conditions at the seafloor should therefore force P. monodon to regularly migrate to the oxic surface layer in order to restore energy reserves and recycle metabolic end products of anaerobic metabolism. It was recently estimated that the ammonium supply mediated by diel vertical migrations (DVMs) of zooplankton and nekton considerably fuels bacterial anaerobic ammonium oxidation—a major loss process for fixed nitrogen in the ocean. These estimates were based on the implicit assumption that anoxia does not result in a down-regulation of ammonium excretion. We here show that exposure to anoxia elicits a fourfold reduction in ammonium excretion from 2.1 ± 0.6 µmol h−1 g dry weight−1 under normoxic to 0.5 ± 0.6 µmol h−1 g DW−1 under anoxic conditions in P. monodon. Estimates of ammonium supply to the anoxic core of oxygen minimum zones via DVM therefore are likely too high.

Keywords

Peru Anaerobic Ammonium Oxidation Anoxic Condition Carapace Length Ammonium Excretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank captain and crew of RV Meteor, as well as the chief scientists of M93 Gaute Lavik and Thorsten Kanzow for their support during this study. Furthermore, we would like to thank T. Werner, R. Rosa and another anonymous reviewer for their valuable comments. This study was financed by the Deutsche Forschungsgemeinschaft via the Sonderforschungsbereich 754 “Climate-Biogeochemistry Interactions in the Tropical Ocean.” Respiration and excretion data are available at http://doi.pangaea.de/10.1594/PANGAEA.847805.

Supplementary material

Online Resource 1

Compilation of video data from benthic lander deployments with positive squat lobster identifications (mp4 87619 kb)

References

  1. Acuña E, Alarcón R, Arancibia H, Cortés A, Cid y L, Cubillos L (2012) Evaluación directa de langostino colorado y langostino amarillo entre la II y VIII Regiones, año 2012. Informe Final Proyecto FIP Nº 2012-02Google Scholar
  2. Angiletta MJ, Dunham AE (2003) The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. Am Nat 162:332–342CrossRefGoogle Scholar
  3. Antezana T (2009) Species-specific patterns of diel migration into the Oxygen Minimum Zone by euphausiids in the Humboldt Current Ecosystem. Progr Oceanogr 83:228–236CrossRefGoogle Scholar
  4. Antezana T (2010) Euphausia mucronata: a keystone herbivore and prey of the Humboldt Current System. Deep Sea Res Pt II 57:652–662CrossRefGoogle Scholar
  5. Aurioles-Gamboa D, Pérez-Flores R (1997) Seasonal and bathymetric changes in feeding habits of the benthic red crab Pleuroncodes planipes (Decapoda, Anomura, Galatheidae) off the Pacific coast of Baja California Sur, Mexico. Crustaceana 70:272–287CrossRefGoogle Scholar
  6. Babbin AR, Keil RG, Devol AH, Ward BB (2014) Organic matter stoichiometry, flux and oxygen control nitrogen loss in the ocean. Science 344:406–408CrossRefGoogle Scholar
  7. Bergmann M, Taylor AC, Moore PG (2001) Physiological stress in decapod crustaceans (Munida rugosa and Liocarcinus depurator) discarded in the Clyde Nephrops fishery. J Exp Mar Biol Ecol 259:215–229CrossRefGoogle Scholar
  8. Bertrand A, Gerlotto F, Bertrand S, Gutiérrez M, Alza L, Chipollini A, Díaz E, Espinoza P, Ledesma J, Quesquén R (2008) Schooling behaviour and environmental forcing in relation to anchoveta distribution: an analysis across multiple spatial scales. Progr Oceanogr 79:264–277CrossRefGoogle Scholar
  9. Bianchi D, Babbin AR, Galbraith ED (2014) Enhancement of anammox by the excretion of diel vertical migrators. Proc Natl Acad Sci USA 111:15653–15658CrossRefGoogle Scholar
  10. Bishop RE, Kakuk B, Torres JJ (2004) Life in the hypoxic and anoxic zones: metabolism and proximate composition of Caribbean troglobitic crustaceans with observations on the water chemistry of two anchialine caves. J Crustac Biol 24:379–392CrossRefGoogle Scholar
  11. Boutilier RG, St-Pierre J (2000) Surviving hypoxia without really dying. Comp Biochem Phys A 126:481–490CrossRefGoogle Scholar
  12. Burd BJ (1985) Respiration of a low oxygen tolerant galatheid crab, Munida quadrispina (Benedict, 1902). Can J Zool 63:2538–2542CrossRefGoogle Scholar
  13. Cass CJ, Daly KL (2014) Eucalanoid copepod metabolic rates in the oxygen minimum zone of the eastern tropical north Pacific: effects of oxygen and temperature. Deep Sea Res Pt I 94:137–149CrossRefGoogle Scholar
  14. Chavez FP, Messié M (2009) A comparison of eastern boundary upwelling ecosystems. Progr Oceanogr 83:80–96CrossRefGoogle Scholar
  15. Childress JJ (1975) The respiratory rates of midwater crustaceans as a function of depth of occurrence and relation to the oxygen minimum layer off Southern California. Comp Biochem Physiol 50:787–799CrossRefGoogle Scholar
  16. Dagg M, Cowles T, Whitledge T, Smith S, Howe S, Judkins D (1980) Grazing and excretion by zooplankton in the Peru upwelling system during April 1977. Deep Sea Res 27:43–59CrossRefGoogle Scholar
  17. Dalsgaard T, Thamdrup B, Canfield DE (2005) Anaerobic ammonium oxidation (anammox) in the marine environment. Res Microbiol 156:457–464CrossRefGoogle Scholar
  18. Davison P, Checkley D Jr, Koslow J, Barlow J (2013) Carbon export mediated by mesopelagic fishes in the northeast Pacific Ocean. Prog Oceanogr 116:14–30CrossRefGoogle Scholar
  19. De Brabandere L, Canfield DE, Dalsgaard T, Friederich GE, Revsbech NP, Ulloa O, Thamdrup B (2014) Vertical partitioning of nitrogen-loss processes across the oxic-anoxic interface of an oceanic oxygen minimum zone. Environ Microbiol 16:3041–3054CrossRefGoogle Scholar
  20. de Lourdes Cobo M, Sonnenholzner S, Wille M, Sorgeloos P (2014) Ammonia tolerance of Litopenaeus vannamei (Boone) larvae. Aquac Res 45:470–475CrossRefGoogle Scholar
  21. Donnelly J, Torres JJ (1988) Oxygen consumption of midwater fishes and crustaceans from the eastern Gulf of Mexico. Mar Biol 97:483–494CrossRefGoogle Scholar
  22. Ekau W, Auel H, Pörtner H-O, Gilbert D (2010) Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7:1669–1699CrossRefGoogle Scholar
  23. Elliott W, Paredes F (1996) Estructura especiológica del subsistema costero E/P San Jacinto 1, 9512-9601. Inf Inst Mar Perú 121:14–26Google Scholar
  24. Elliott W, Paredes F (1997) Estructura especiológica de los subsistemas demersal costero y pelagial costero. Prospección E/E Huamanga 9611-12. Inf Inst Mar Perú 125:48–65Google Scholar
  25. Elliott W, Samamé M (2001) Estructura del sistema demersal durante el crucero de otońo BIC José Olaya Balandra 0004-05. Inf Inst Mar Perú 161:79–97Google Scholar
  26. Elliott W, Caccha L, Benites C (2011a) Estructura del subsistema demersal en otoño 2003. Crucero BIC Olaya 0305-06. Inf Inst Mar Perú 38:197–202Google Scholar
  27. Elliott W, Caccha L, Benites C (2011b) Estructura del subsistema demersal durante el verano 2004. Crucero BIC Olaya 0401-02. Inf Inst Mar Perú 38:321–334Google Scholar
  28. Escribano R, Hidalgo P, Krautz C (2009) Zooplankton associated with the oxygen minimum zone system in the norther upwelling region of Chile during March 2000. Deep Sea Res Pt II 56:1083–1094CrossRefGoogle Scholar
  29. Gallardo VA, Cañete JI, Roa R, Enríquez-Briones S, Baltazar M (1994) Recruitment of the squat lobster Pleuroncodes monodon on the continental shelf off central Chile. J Crustacean Biol 14:665–669CrossRefGoogle Scholar
  30. Geihs MA, Maciel FE, Varga MA, Cruz BP, Nery LEM (2013) Effects of hypoxia and reoxygenation on the energetic metabolism of the crab Neohelice granulate (Decapoda, Varunidae). J Exp Mar Biol Ecol 445:69–78CrossRefGoogle Scholar
  31. Grasshoff K, Kremling K, Ehrhardt M (1999) Methods of seawater analysis, 3rd edn. Wiley, LondonCrossRefGoogle Scholar
  32. Gutiérrez M, Ramirez A, Bertrand S, Móron O, Bertrand A (2008) Ecological niches and areas of overlap of the squat lobster ‘munida’ (Pleuroncodes monodon) and anchoveta (Engraulis ringens) off Peru. Progr Oceanogr 79:256–263CrossRefGoogle Scholar
  33. Hagerman L, Szaniawska A (1994) Haemolymph nitrogen compounds and ammonia efflux rates under anoxia in the brackish water isopod Saduria entomon. Mar Ecol Prog Ser 103:285–289CrossRefGoogle Scholar
  34. Hagerman L, Søndergard T, Weile K, Hosie D, Uglow RF (1990) Aspects of blood physiology and ammonia excretion in Nephrops norvegicus under hypoxia. Comp Biochem Physiol 97:51–55CrossRefGoogle Scholar
  35. Haye PA, Salinas P, Acuna E, Poulin E (2010) Heterochronic phenotypic plasticity with lack of genetic differentiation in the southeastern Pacific squat lobster Pleuroncodes monodon. Evol Dev 12(6):628–634CrossRefGoogle Scholar
  36. Helly JJ, Levin LA (2004) Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Res Pt I 51:1159–1168CrossRefGoogle Scholar
  37. Hidaka K, Kawaguchi K, Murakami M, Takahashi M (2001) Downward transport of organic carbon by diel migratory micronekton in the western equatorial Pacific: its quantitative and qualitative importance. Deep Sea Res Part I 48:1923–1939CrossRefGoogle Scholar
  38. Holmes RM, Aminot A, Kérouel R, Hooker BA, Peterson BJ (1999) A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can J Fish Aquat Sci 56:1801–1808CrossRefGoogle Scholar
  39. Ikeda T (2014) Respiration and ammonia excretion by marine metazooplankton taxa: synthesis toward a global-bathymetric model. Mar Biol 161:2753–2766CrossRefGoogle Scholar
  40. Johnson S (2003) Lifting the cloak of invisibility: the effects of changing optical conditions on pelagic crypsis. Integr Comp Biol 43:580–590CrossRefGoogle Scholar
  41. Kalvelage T, Jensen MM, Contreras S, Revsbeck NP, Lam P, Günter M, LaRoche J, Lavik G, Kuypers MMM (2011) Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones. PLoS One 6(12):e29299. doi: 10.1371/journal.pone.0029299 CrossRefGoogle Scholar
  42. Levin LA (2003) Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr Mar Biol 41:1–45Google Scholar
  43. Longhurst AR, Bedo AW, Harrison WG, Head EJH, Sameoto DD (1990) Vertical flux of respiratory carbon by oceanic diel migrant biota. Deep Sea Res Pt I 37:685–694CrossRefGoogle Scholar
  44. Lovrich GA, Thiel M (2011) Ecology, physiology, feeding and trophic role of squat lobsters. In: Poore G, Ahyong S, Taylor J (eds) The biology of squat lobsters. CSIRO Publishing, Melbourne, pp 183–221Google Scholar
  45. Marshall DJ, Bode M, White CR (2013) Estimating physiological tolerances—a comparison of traditional approaches to nonlinear regression techniques. J Exp Biol 216:2176–2182CrossRefGoogle Scholar
  46. Matabos M, Tunnicliffe V, Kim Juniper S, Dean C (2012) A year in hypoxia: epibenthic community responses to severe oxygen deficit at a subsea observatory in a coastal inlet. PLoS One. doi: 10.1371/journal.pone.0045626 Google Scholar
  47. Morales CE, Braun M, Reyes H, Blanco JL, Davies AG (1996) Anchovy larval distribution in the coastal zone off northern Chile: the effect of low dissolved oxygen concentrations and of a cold-warm sequence (1990-95). Invest Mar 24:77–96CrossRefGoogle Scholar
  48. Oeschger R (1990) Long-term anaerobiosis in sublittoral marine invertebrates from the Western Baltic Sea: Halicryptus spinulosus (Priapulida), Astarte borealis and Arctica islandica (Bivalvia). Mar Ecol Prog Ser 59:133–143CrossRefGoogle Scholar
  49. Packard TT, Osma N, Fernández-Urruzola I, Codispoti LA, Christensen JP, Gómez M (2014) Peru upwelling plankton respiration: calculations of carbon flux, nutrient retention efficiency and heterotrophic energy production. Biogeosci Discuss 11:16177–16206CrossRefGoogle Scholar
  50. Prosser CL (1961) Oxygen: respiration and metabolism. In: Prosser CL, Brown FA (eds) Comparative animal physiology. Saunders, Philadelphia, pp 165–211Google Scholar
  51. Quetin LB, Childress JJ (1976) Respiratory adaptations of Pleuroncodes planipes to its environment off Baja California. Mar Biol 38:327–334CrossRefGoogle Scholar
  52. Racotta IS, Hernández-Herrera R (2000) Metabolic responses of the white shrimp, Penaeus vannamei, to ambient ammonia. Comp Biochem Physiol Part A 125:437–443CrossRefGoogle Scholar
  53. Reiber CL (1997) Ontogeny of cardiac and ventilatory function in the crayfish Procambarus clarkia. Am Zool 37:82–91Google Scholar
  54. Roa R, Gallardo VA, Ernst B, Baltazar M, Cañete JI, Enríques-Brionnes S (1995) Nursery ground, age structure and abundance of juvenile squat lobster Pleuroncodes monodon on the continental shelf off central Chile. Mar Ecol Prog Ser 116:47–54CrossRefGoogle Scholar
  55. Roa R, Tapia F, Cid L, Quiñónez R, Ernst B, Figueroa D, Arancibia H, Galleguillos R, Retamal M (1997) Evaluación directa del stock de langostino colorado en la zona centro sur Informe final proyecto FIP No. 96-23. Universidad de Concepción, Chile (in Spanish) Google Scholar
  56. Rosa R, Seibel BA (2010) Metabolic physiology of the Humboldt squid, Dosidicus gigas: implications for vertical migration in a pronounced oxygen minimum zone. Prog Oceanogr 86:72–80CrossRefGoogle Scholar
  57. Rosas C, Martinez E, Gaxiola G, Brito R, Sánchez A, Soto LA (1999) The effect of dissolved oxygen and salinity on oxygen consumption, ammonia excretion and osmotic pressure of Penaeus setiferus (Linnaeus) juveniles. J Exp Mar Biol Ecol 234:41–57CrossRefGoogle Scholar
  58. Seibel B (2011) Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones. J Exp Biol 214:326–336CrossRefGoogle Scholar
  59. Spicer JI (1995) Ontogeny of respiratory function in crustaceans exhibiting either direct or indirect development. J Exp Zool 272:413–418CrossRefGoogle Scholar
  60. Spicer JI, Stroemberg JO (2003) Developmental changes in the responses of O2 uptake and ventilation to acutely declining O2 tensions in larval krill Meganyctiphanes norvegica. J Exp Mar Biol Ecol 295:207–218CrossRefGoogle Scholar
  61. Steinberg DK, Goldthwait SA, Hansell DA (2002) Zooplankton vertical migration and the active transport of dissolved organic and inorganic nitrogen in the Sargasso Sea. Deep Sea Res Pt I 49:1445–1461CrossRefGoogle Scholar
  62. Teuber L, Kiko R, Seguin F, Auel H (2013) Respiration rates of tropical Atlantic copepods in relation to the oxygen minimum zone. J Exp Mar Biol Ecol 448:28–36CrossRefGoogle Scholar
  63. Thamdrup B, Dalsgaard T, Revsbech NP (2012) Widespread functional anoxia in the oxygen minimum zone of the Eastern South Pacific. Deep Sea Res Pt I 65:36–45CrossRefGoogle Scholar
  64. Villarroel JC, Acuña EH, Andrade MJ (2001) Feeding and distribution of the bigeye flounder Hippoglossina macrops off Northern Chile. Mar Freshw Res 52:833–841CrossRefGoogle Scholar
  65. Waddell TG, Repovic P, Melendez-Hevia E, Heinrich R, Montero F (1997) Optimization of glycolysis: a new look at the efficiency of energy coupling. Biochem Educ 25:204–205CrossRefGoogle Scholar
  66. Weihrauch D, Morris S, Towle DW (2004) Ammonia excretion in aquatic and terrestrial crabs. J Exp Biol 207:4491–4504CrossRefGoogle Scholar
  67. Yanicelli B, Castro LR (2013) Ecophysiological constrains on the larvae of Pleuroncodes monodon and the implications for its reproductive strategy in poorly oxygenated waters of the Peru-Chile undercurrent. J Plankton Res. doi: 10.1093/plankt/fbs090 Google Scholar
  68. Yannicelli B, Castro L, Parada C, Schneider W, Colas F, Dononso D (2012) Distribution of Pleuroncodes monodon larvae over the continental shelf of south-central Chile: field and modeling evidence for partial local retention and transport. Prog Oceanogr 92–95:206–227CrossRefGoogle Scholar
  69. Yannicelli B, Paschke K, González RR, Castro LR (2013) Metabolic responses of the squat lobster (Pleuroncodes monodon) larvae to low oxygen concentration. Mar Biol 160:961–976CrossRefGoogle Scholar
  70. Zebe E (1982) Anaerobic metabolism in Upogebia pugettensis and Callianassa californiensis (Crustacea, Thalasssinidea). Comp Biochem Physiol 72:613–617Google Scholar
  71. Zhang XS, Dam HG (1997) Downward export of carbon by diel migrant mesozooplankton in the central equatorial Pacific. Deep Sea Res Pt II 44:2191–2202CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Rainer Kiko
    • 1
    Email author
  • Helena Hauss
    • 1
  • Marcus Dengler
    • 1
  • Stefan Sommer
    • 1
  • Frank Melzner
    • 1
  1. 1.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany

Personalised recommendations