Marine Biology

, Volume 162, Issue 8, pp 1651–1664 | Cite as

Temporal patterns of Pederson shrimp (Ancylomenes pedersoni Chace 1958) cleaning interactions on Caribbean coral reefs

  • Benjamin M. TitusEmail author
  • Marymegan Daly
  • Dan A. Exton
Original Paper


Dozens of marine species have been identified as “cleaners” and many of these co-occur and have considerable overlap in clientele. Understanding the temporal patterns and processes of these cleaning symbioses can provide insight into differential service provision between cleaner species and the ultimate and proximate causes structuring these interactions. Considerable progress has been made in understanding the ecology and behavior of cleaner fish, yet little basic ecological and behavioral data exist for cleaner shrimp. We deployed remote underwater video cameras on coral reefs in the Bay Islands, Honduras, to explore temporal variation of cleaning interactions at Pederson shrimp (Ancylomenes pedersoni) stations. We recorded more than 650 individual cleaning interactions in over 190 h of video. We find no significant temporal variation in cleaning station usage patterns across 17 families of reef fish. Our findings are in contrast to previously published data for interactions of Caribbean cleaner gobies, which co-occur at the sites we studied and overlap significantly in client pool with A. pedersoni but which are most active at dawn. These data suggest that the services provided by cleaner shrimp and cleaner gobies, rather than client identity, independently structure these interactions and drive the discordance in usage patterns between cleaner type. We propose two non-exclusive hypotheses to explain the differences in the temporal patterns of activity between cleaner gobies and A. pedersoni: (1) the proximate causes driving fish visitation rate (e.g., parasite removal or tactile stimulation) to goby and shrimp stations differ, and (2) each cleaner type targets different ectoparasites that differ temporally in their diel infestation rate on reef fish. Our study provides an important rationale for pursuing these questions and broadens our understanding of cleaning services on Caribbean coral reefs.


Reef Fish Tactile Stimulation Reef Site Cleaning Station Clean Fish 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the Honduran government for research permit approval and Operation Wallacea volunteers and staff for valuable field assistance. Coral View Research Centre (Utila) and the Honduran Coral Reef Foundation (Cayos Cochinos Marine Protected Area) contributed on site support and logistics. We thank the Paul Sikkel Lab at Arkansas State University for providing constructive feedback on this manuscript, Amber McCammon for valuable discussion throughout this project, Nick Skomrock and Isaac Ligocki for help with statistical analyses, and three anonymous reviewers for comments that greatly improved this manuscript. This research was funded by Operation Wallacea and the Trautman Fund, Museum of Biological Diversity, The Ohio State University.

Supplementary material

Video 1 Cleaning interaction between client grouper and Ancylomenes pedersoni cleaner shrimp in Utila, Bay Islands, Honduras during July 2013. (MP4 66976 kb)


  1. Arnal C, Côté IM (2000) Diet of broadstripe cleaning gobies on a Barbadian reef. J Fish Biol 57:1075–1082. doi: 10.1006/jfbi.2000.1371 CrossRefGoogle Scholar
  2. Arnal C, Côté IM, Sasal P, Morand S (2000) Cleaner–client interactions on a Caribbean reef: influence of correlates of parasitism. Behav Ecol Sociobiol 47:353–358CrossRefGoogle Scholar
  3. Arnal C, Côté IM, Morand S (2001) Why clean and be cleaned? The importance of client ectoparasites and mucus in a marine cleaning symbiosis. Behav Ecol Sociobiol 51:1–7. doi: 10.1007/s002650050676 CrossRefGoogle Scholar
  4. Artim JM, Sikkel PC (2013) Live coral repels a common reef ectoparasite. Coral Reefs 32:487–494CrossRefGoogle Scholar
  5. Becker JH, Grutter AS (2004) Cleaner shrimp do clean. Coral Reefs 23:515–520. doi: 10.1007/s00338-004-0429-3 Google Scholar
  6. Becker JHA, Grutter AS (2005) Client fish ectoparasite loads and cleaner shrimp Urocaridella sp. c hunger levels affect cleaning behavior. Anim Behav 70:991–996CrossRefGoogle Scholar
  7. Bellwood DR, Hoey AS, Choat JH (2003) Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecol Lett 6:281–285CrossRefGoogle Scholar
  8. Bonaldo RM, Grutter AS, Sazima I, Krajewski JP (2014) 24/7 service: nocturnal cleaning in a tropical Indo-Pacific reef. Mar Biodivers. doi: 10.1007/s12526-014-0289-1 CrossRefGoogle Scholar
  9. Briones-Fourzan P, Perez-Ortiz M, Negrete-Soto F, Barradas-Ortiz C, Lozano-Alvarez E (2012) Ecological traits of Caribbean sea anemones and symbiotic crustaceans. Mar Ecol Prog Ser 470:55–68. doi: 10.3354/meps10030 CrossRefGoogle Scholar
  10. Bshary R (2001) The cleaner fish market. In: Economics in nature: social dilemmas, mate choice and biological markets: 146–172. doi: 10.1017/cbo9780511752421.010
  11. Bshary R (2003) The cleaner wrasse, Labroides dimidiatus, is a key organism for reef fish diversity at Ras Mohammed National Park, Egypt. J Anim Ecol 72:169–176. doi: 10.1046/j.1365-2656.2003.00683.x CrossRefGoogle Scholar
  12. Bshary R, Grutter AS (2002) Parasite distribution on client reef fish determines cleaner fish foraging patterns. Mar Ecol Prog Ser 235:217–222CrossRefGoogle Scholar
  13. Bshary R, Wurth M (2001) Cleaner fish Labroides dimidiatus manipulate client reef fish by providing tactile stimulation. Proc R Soc B 268:1495–1501CrossRefGoogle Scholar
  14. Bshary R, Oliveira RF, Oliveira TSF, Canario AVM (2007) Do cleaning organisms reduce the stress response of client reef fish? Front Zool 4:1–8CrossRefGoogle Scholar
  15. Bshary R, Grutter AS, Willener AST, Leimar O (2008) Pairs of cooperating cleaner fish provide better service quality than singletons. Nature 455:964–966. doi: 10.1038/nature07184 CrossRefGoogle Scholar
  16. Bunkley-Williams L, Williams EH (1998) Ability of Pederson cleaner shrimp to remove juveniles of the parasitic cymothoid isopod, Anilocra haemuli, from the host. Crustaceana 71:862–869. doi: 10.1163/156854098x00888 CrossRefGoogle Scholar
  17. Campos CE, Sa-Oliveira JC (2011) Cleaning activity and fish clients of Elacatinus figaro (Pisces: Gobiidae) on coral reefs of Parrachos de Muriu, Northeastern Brazil. Biota Neotropica 11:47–51CrossRefGoogle Scholar
  18. Chace FA (1958) A new genus of shrimp from the genus Periclimenes found in the West Indies. Proc Biol Soc Wash 71:125–132Google Scholar
  19. Chapman CJ, Johnston AD, Dunn JR, Creasey DJ (1974) Reactions of fish to sound generated by divers open-circuit underwater breathing apparatus. Mar Biol 27:357–366. doi: 10.1007/bf00394372 CrossRefGoogle Scholar
  20. Chapuis L, Bshary R (2009) Strategic adjustment of service quality to client identity in the cleaner shrimp, Periclimenes longicarpus. Anim Behav 78:455–459. doi: 10.1016/j.anbehav.2009.06.001 CrossRefGoogle Scholar
  21. Cheney KL, Côté IM (2005) Mutualism or parasitism? The variable outcome of cleaning symbioses. Biol Lett 1:162–165CrossRefGoogle Scholar
  22. IBM Corp (2013) IBM SPSS statistics for Macintosh, Version 200. IBM Corp, ArmonkGoogle Scholar
  23. Côté IM (2000) Evolution and ecology of cleaning symbioses in the sea. Oceanogr Mar Biol 38:311–355Google Scholar
  24. Côté IM, Molloy PP (2003) Temporal variation in cleanerfish and client behaviour: does it reflect ectoparasite availability? Ethology 109:487–499. doi: 10.1046/j.1439-0310.2003.00883.x CrossRefGoogle Scholar
  25. Côté IM, Soares MC (2011) Gobies as cleaners. In: Patzner R (ed) The biology of gobies. Science Publishers, St. Helier, p 525Google Scholar
  26. Dearden P, Theberge M, Yasue M (2010) Using underwater cameras to assess the effects of snorkeler and SCUBA diver presence on coral reef fish abundance, family richness, and species composition. Environ Monit Assess 163:531–538. doi: 10.1007/s10661-009-0855-3 CrossRefGoogle Scholar
  27. Dickens LC, Goatley CHR, Tanner JK, Bellwood DR (2011) Quantifying relative diver effects in underwater visual censuses. PLoS One. doi: 10.1371/journal.pone.0018965 CrossRefGoogle Scholar
  28. Fox RJ, Bellwood DR (2008) Direct versus indirect methods of quantifying herbivore grazing impact on a coral reef. Mar Biol 154:325–334. doi: 10.1007/s00227-008-0927-x CrossRefGoogle Scholar
  29. Gingins S, Bshary R (2015) Pairs of cleaner fish prolong interaction duration with client reef fish by increasing service quality. Behav Ecol 26:350–358. doi: 10.1093/beheco/aru194 CrossRefGoogle Scholar
  30. Gingins S, Werminghausen J, Johnstone RA, Grutter AS, Bshary R (2013) Power and temptation cause shifts between exploitation and cooperation in a cleaner wrasse mutualism. Proc R Soc B 280:1–6CrossRefGoogle Scholar
  31. Grutter AS (1995) Relationship between cleaning rates and ectoparasite loads in coral reef fishes. Mar Ecol Prog Ser 118:51–58CrossRefGoogle Scholar
  32. Grutter A (1996) Parasite removal rates by the cleaner wrasse Labroides dimidiatus. Mar Ecol Prog Ser 130:61–70. doi: 10.3354/meps130061 CrossRefGoogle Scholar
  33. Grutter AS (1999a) Cleaner fish really do clean. Nature 398:672–673. doi: 10.1038/19443 CrossRefGoogle Scholar
  34. Grutter AS (1999b) Infestation dynamics of gnathiid isopod juveniles parasitic on the coral-reef fish Hemigymnus melapterus (Labridae). Mar Biol 135:545–552. doi: 10.1007/s002270050655 CrossRefGoogle Scholar
  35. Grutter AS (2001) Parasite infection rather than tactile stimulation is the proximate cause of cleaning behaviour in reef fish. Proc R Soc B 268:1361–1365. doi: 10.1098/rspb.2001.1658 CrossRefGoogle Scholar
  36. Grutter AS (2004) Cleaner fish use tactile dancing behavior as a preconflict management strategy. Curr Biol 14:1080–1083. doi: 10.1016/j.cub.2004.05.048 CrossRefGoogle Scholar
  37. Grutter AS, Bshary R (2003) Cleaner wrasse prefer client mucus: support for partner control mechanisms in cleaning interactions. Proc R Soc B 270:S242–S244. doi: 10.1098/rsbl.2003.0077 CrossRefGoogle Scholar
  38. Grutter AS, Hendrikz J (1999) Diurnal variation in the abundance of juvenile parasitic gnathiid isopods on coral reef fish: implications for parasite-cleaner fish interactions. Coral Reefs 18:187–191. doi: 10.1007/s003380050178 CrossRefGoogle Scholar
  39. Grutter AS, Lester RJG, Greenwood J (2000) Emergence rates from the benthos of the parasitic juveniles of gnathiid isopods. Mar Ecol Prog Ser 207:123–127CrossRefGoogle Scholar
  40. Grutter AS, Murphy JM, Choat JH (2003) Cleaner fish drives local fish diversity on coral reefs. Curr Biol 13:64–67. doi: 10.1016/s0960-9822(02)01393-3 CrossRefGoogle Scholar
  41. Huebner LK, Chadwick NE (2012a) Patterns of cleaning behaviour on coral reef fish by the anemoneshrimp Ancylomenes pedersoni. J Mar Biol Assoc UK 92:1557–1562. doi: 10.1017/s0025315411001822 CrossRefGoogle Scholar
  42. Huebner LK, Chadwick NE (2012b) Reef fishes use sea anemones as visual cues for cleaning interactions with shrimp. J Exp Mar Biol Ecol 416:237–242. doi: 10.1016/j.jembe.2012.01.004 CrossRefGoogle Scholar
  43. Humann P, Deloach N (2006) Reef creature identification: Florida, Caribbean, Bahamas, 2nd edn. New World Publications Inc, JacsonvileGoogle Scholar
  44. Januchowski-Hartley FA, Graham NAJ, Feary DA, Morove T, Cinner JE (2011) Fear of fishers: human predation explains behavioral changes in coral reef fishes. PLoS One. doi: 10.1371/journal.pone.0022761 CrossRefGoogle Scholar
  45. Johnson WS, Ruben P (1988) Cleaning behavior of Bodianus rufus, Thalasoma bifasciatum, Gobiosoma evelynae, and Periclimenes pedersoni along a depth gradient at Salt River submarine Canyon, St. Croix. Environ Biol Fish 23:225–232. doi: 10.1007/bf00004913 CrossRefGoogle Scholar
  46. Karplus I (2014) Symbiosis in fishes: the biology of interspecific partnerships. Wiley, New YorkCrossRefGoogle Scholar
  47. Kulbicki M (1998) How the acquired behaviour of commercial reef fishes may influence the results obtained from visual censuses. J Exp Mar Biol Ecol 222:11–30. doi: 10.1016/s0022-0981(97)00133-0 CrossRefGoogle Scholar
  48. Limbaugh C, Pederson H, Chace FA (1961) Shrimps that clean fishes. Bull Mar Sci Gulf Carib 11:237–257Google Scholar
  49. Lobel PS (2005) SCUBA bubble noise and fish behavior: a rationale for silent diving technology. In: Diving for science, proceedings of the american society of underwater sciences, pp 49–59Google Scholar
  50. Longo GO, Floeter SR (2012) Comparison of remote video and diver’s direct observations to quantify reef fishes feeding on benthos in coral and rocky reefs. J Fish Biol 81:1773–1780. doi: 10.1111/j.1095-8649.2012.03441.x CrossRefGoogle Scholar
  51. Losey GS Jr (1979) Fish cleaning symbiosis: proximate causes of host behavior. Anim Behav 27:685–699CrossRefGoogle Scholar
  52. Losey Jr GS (1972) The ecological importance of cleaning symbiosis. Copeia 1972:820–833CrossRefGoogle Scholar
  53. Losey GS Jr, Margules L (1974) Cleaning symbiosis provides a positive reinforcer for fish. Science 184:179–180CrossRefGoogle Scholar
  54. Mahnken C (1972) Observations on cleaner shrimps of the genus Periclimenes. Nat Hist Mus Los Angeles County Sci Bull 14:71–83Google Scholar
  55. Mascaro M, Rodriguez-Pestana L, Chiappa-Carrara X, Simoes N (2012) Host selection by the cleaner shrimp Ancylomenes pedersoni: do anemone host species, prior experience or the presence of conspecific shrimp matter? J Exp Mar Biol Ecol 413:87–93. doi: 10.1016/j.jembe.2011.11.026 CrossRefGoogle Scholar
  56. McCammon A, Sikkel PC, Nemeth D (2010) Effects of three Caribbean cleaner shrimps on ectoparasitic monogeneans in a semi-natural environment. Coral Reefs 29:419–426. doi: 10.1007/s00338-009-0583-8 CrossRefGoogle Scholar
  57. Okuno J, Bruce AJ (2010) Designation of Ancylomenes gen. nov., for the ‘Periclimenes aesopius species group’ (Crustacea: Decapoda: Palaemonidae), with the description of a new species and a checklist of congeneric species. Zootaxa 2372:85–105Google Scholar
  58. Sazima I, Sazima C, Francini RB, Moura RL (2000) Daily cleaning activity and diversity of clients of the barber goby, Elacatinus figaro, on rocky reefs in southeastern Brazil. Environ Biol Fish 59:69–77. doi: 10.1023/a:1007655819374 CrossRefGoogle Scholar
  59. Schirmer A, Jesuthasan S, Mathuru AS (2013) Tactile stimulation reduces fear in fish. Front Behav Neuro. doi: 10.3389/fnbeh.2013.00167
  60. Sikkel PC, Cheney KL, Côté IM (2004) In situ evidence for ectoparasites as a proximate cause of cleaning interactions in reef fish. Anim Behav 68:241–247. doi: 10.1016/j.anbehav.2003.10.023 CrossRefGoogle Scholar
  61. Sikkel PC, Schaumburg CS, Mathenia JK (2006) Diel infestation dynamics of gnathiid isopod larvae parasitic on Caribbean reef fish. Coral Reefs 25:683–689. doi: 10.1007/s00338-006-0154-1 CrossRefGoogle Scholar
  62. Smit NJ, Davies AJ (2004) The curious life-style of the parasitic stages of gnathiid isopods. Adv Parasitol 58:289–391. doi: 10.1016/s0065-308x(04)58005-3 CrossRefGoogle Scholar
  63. Soares MC, Cardoso SC, Côté IM (2007) Client preferences by Caribbean cleaning gobies: food, safety or something else? Behav Ecol Sociobiol 61:1015–1022. doi: 10.1007/s00265-006-0334-6 CrossRefGoogle Scholar
  64. Soares MC, Bshary R, Cardoso SC, Cote IM (2008a) Does competition for clients increase service quality in cleaning gobies? Ethology 114:625–632. doi: 10.1111/j.1439-0310.2008.01510.x CrossRefGoogle Scholar
  65. Soares MC, Cote IM, Cardoso SC, Bshary R (2008b) The cleaning goby mutualism: a system without punishment, partner switching or tactile stimulation. J Zool 276:306–312. doi: 10.1111/j.1469-7998.2008.00489.x CrossRefGoogle Scholar
  66. Soares MC, Côté IM, Cardoso SC, Oliveira RF, Bshary R (2010) Caribbean cleaning gobies prefer client ectoparasites over mucus. Ethology 116:1244–1248. doi: 10.1111/j.1439-0310.2010.01838.x CrossRefGoogle Scholar
  67. Soares MC, Oliveira RF, Ros AFH, Grutter AS, Bshary R (2011) Tactile stimulation lowers stress in fish. Nat Commun 2:534CrossRefGoogle Scholar
  68. Titus BM, Daly M (2014) Fine-scale phylogeography reveals cryptic biodiversity in Pederson’s cleaner shrimp, Ancylomenes pedersoni (Crustacea: Caridea: Palaemonidae), along the Florida Reef Tract. Mar Ecol. doi: 10.1111/maec.12237 CrossRefGoogle Scholar
  69. Titus BM, Daly M, Exton DA (2015) Do reef fish habituate to diver presence? Evidence from two reef sites with contrasting historical levels of SCUBA intensity in the Bay Islands, Honduras. PLoS One. doi: 10.1371/journal.pone.0119645 CrossRefGoogle Scholar
  70. Turnbull TL (1981) A study of the symbiotic relationship between the palaemonid Periclimenes pedersoni Chace (Crustacea, Decapoda, Caridea) and certain species of serranid fishes in the Bahamas. PhD thesis New York UniversityGoogle Scholar
  71. Welicky RL, Cheney KL, Coile AM, McCammon A, Sikkel PC (2013) The relationship between lunar periodicity and activity of fish-parasite gnathiid isopods in the Caribbean. Mar Biol 160:1607–1617CrossRefGoogle Scholar
  72. Whiteman EA, Côté IM (2002) Cleaning activity of two Caribbean cleaning gobies: intra- and interspecific comparisons. J Fish Biol 60:1443–1458. doi: 10.1006/jfbi.2002.1947 CrossRefGoogle Scholar
  73. Wicksten MK (1995) Association of fishes and their cleaners on coral reef of Bonaire, Netherlands Antilles. Copeia 2:477–481CrossRefGoogle Scholar
  74. Wicksten MK (1998) Behaviour of cleaners and their client fishes at Bonaire, Netherlands Antilles. J Nat Hist 32:13–30. doi: 10.1080/00222939800770021 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Benjamin M. Titus
    • 1
    • 2
    Email author
  • Marymegan Daly
    • 1
  • Dan A. Exton
    • 2
  1. 1.Department of Evolution, Ecology, and Organismal BiologyThe Ohio State UniversityColumbusUSA
  2. 2.Operation WallaceaLincolnshireUK

Personalised recommendations