Advertisement

Marine Biology

, Volume 162, Issue 8, pp 1637–1649 | Cite as

Abundant bioluminescent sources of low-light intensity in the deep Mediterranean Sea and North Atlantic Ocean

  • Jessica CraigEmail author
  • Imants G. Priede
  • Jacopo Aguzzi
  • Joan B. Company
  • Alan J. Jamieson
Original Paper

Abstract

Light plays a critical role in the functioning of the marine environment. In the dark ocean, bioluminescent organisms are the only visually relevant sources of light. Cameras of different sensitivities were used to compare the density of pelagic bioluminescent sources (BL) of different light intensities at a regional scale: the image-intensified charge-coupled device for deep-sea research (ICDeep), an image-intensified silicon intensifier target (ISIT) camera and a silicon intensifier target (SIT) camera. Pelagic ICDeep values were higher than ISIT measurements by a mean factor of 7.6 in the Mediterranean Sea and 3.5 in the Atlantic Ocean. Atlantic ISIT values were higher than SIT values by a mean factor of 4.5. Standardising bioluminescence measurements to the near-seafloor (0–400 m above bottom) layer, BLNSF, a logarithmic decrease with depth was observed from three independent datasets (slopes not significantly different): ISIT (Atlantic, Mediterranean), ICDeep (Mediterranean). Intercepts from ICDeep measurements were higher than ISIT measurements by a factor of 4.4. From these trends, a conversion factor to calculate benthopelagic plankton biomass from near-seafloor BLNSF density was derived. Calibration of the ICDeep enabled calculation of the minimum intensity of source visible to that camera. BLNSF sources of low-light intensity (≥1.4 × 10−7 W m−2) outnumber fourfold sources of greater intensity (>ca. 10−6 W m−2 (λpeak = 470 nm). This reveals a high abundance of low-light bioluminescent sources in the marine environment, with mean pelagic densities of 33.15 sources m−3 (Atlantic) and 6.79 sources m−3 (Mediterranean) between 500 and 1500 m depth.

Keywords

Light Output North Atlantic Ocean Zooplankton Biomass Benthic Boundary Layer Camera Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

J.C. was funded by UK NERC studentship (NE/F012020/1). J.A. was funded by Ramon y Cajal program (MICINN). We also thank G.P. Gasparini (leader RV Urania cruise), H. Kontoyiannis (leader RV Aegaeo cruises), Dr. F. Sardá (leader RV Sarmiento de Gamboa cruise) and colleagues for facilitating on board work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights statement

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

227_2015_2700_MOESM1_ESM.pdf (556 kb)
Supplementary material 1 (PDF 556 kb)

References

  1. Aguzzi J, Company JB (2010) Chronobiology of deep-water decapod crustaceans on continental margins. Adv Mar Biol 58:155–225PubMedCrossRefGoogle Scholar
  2. Aguzzi J, Company JB, Costa C, Menesatti P, Garcia JA, Bahamon N, Puig P, Sardà F (2011) Activity rhythms in the deep-sea: a chronobiological approach. Front Biosci Landmark 16:131–150CrossRefGoogle Scholar
  3. Aguzzi J, Sbragaglia V, Tecchio S, Navarro J, Company JB (2015) Rhythmic behaviour of marine benthopelagic species and the synchronous dynamics of benthic communities. Deep Sea Res I 95:1–11CrossRefGoogle Scholar
  4. Andrews CC, Karl DM, Small LF, Fowler SW (1984) Metabolic activity and bioluminescence of oceanic faecal pellets and sediment trap particles. Nature 307:539–541CrossRefGoogle Scholar
  5. Angel MV (1990) Life in the benthic boundary layer: connections to the mid-water and sea floor. Philos Trans R Soc A 331(1616):15–28CrossRefGoogle Scholar
  6. Angel MV (2003) The pelagic environment of the open ocean. In: Tyler PA (ed) Ecosystems of the deep oceans. Elsevier, Amsterdam, pp 39–79Google Scholar
  7. Angel MV, Baker AdeC (1982) Vertical distribution of the standing crop of plankton and micronekton at three stations in the northeast Atlantic. Biol Oceanogr 2(1):1–30Google Scholar
  8. Aoki T, Kitamura T, Matsuno S, Mitsui K, Ohashi Y, Okada A, Cady D, Learned J, O’Connor D, Dye S (1986) Background light measurements in the deep ocean. Il Nuovo Cim C 9(2):642–652CrossRefGoogle Scholar
  9. Arman P, Anvar S, Aslanides E et al (2000) Background light in potential sites for the ANTARES undersea neutrino telescope. Astropart Phys 13:127–136CrossRefGoogle Scholar
  10. Bailey D, Bagley P, Jamieson A, Cromarty A, Collins M, Tselepidis A, Priede I (2005) Life in a warm deep sea: routine activity and burst swimming performance of the shrimp Acanthephyra eximia in the abyssal Mediterranean. Mar Biol 146(6):1199–1206CrossRefGoogle Scholar
  11. Beckmann W (1988) The zooplankton community in the deep bathyal and abyssal zones of the eastern North Atlantic: preliminary results and data lists from MOCNESS hauls during cruise 08 of the RV “POLARSTERN”. Berichte zur Polarforschung (Rep Polar Res) 42:1–58. ISSN 01 76-5027Google Scholar
  12. Bowlby M, Case J (1991) Flash kinetics and spatial patterns of bioluminescence in the copepod Gaussia princeps. Mar Biol 110(3):329–336CrossRefGoogle Scholar
  13. Bowlby MR, Widder EA, Case JF (1990) Patterns of stimulated bioluminescence in two pyrosomes (tunicata: Pyrosomatidae). Biol Bull 179(3):340–350PubMedCrossRefGoogle Scholar
  14. Bowlby M, Widder E, Case J (1991) Disparate forms of bioluminescence from the amphipods Cyphocaris faurei, Scina crassicornis and S. borealis. Mar Biol 108(2):247–253CrossRefGoogle Scholar
  15. Bradner H, Bartlett M, Blackinton G, Clem J, Karl D, Learned J, Lewitus A, Matsuno S, O’Connor D, Peatman W (1987) Bioluminescence profile in the deep pacific ocean. Deep Sea Res A 34(11):1831–1840CrossRefGoogle Scholar
  16. Childress JJ (1995) Are there physiological and biochemical adaptations of metabolism in deep-sea animals? Trends Ecol Evol 10(1):30–36PubMedCrossRefGoogle Scholar
  17. Christiansen B, Drüke B, Koppelmann R, Weikert H (1999) The near-bottom zooplankton at the abyssal BIOTRANS site, northeast Atlantic: composition, abundance and variability. J Plankton Res 21(10):1847–1863CrossRefGoogle Scholar
  18. Clarke G, Conover RJ, David CN, Nicol J (1962) Comparative studies of luminescence in copepods and other pelagic marine animals. J Mar Biol Assoc UK 42(03):541–564CrossRefGoogle Scholar
  19. Craig J, Jamieson AJ, Heger A, Priede IG (2009) Distribution of bioluminescent organisms in the Mediterranean Sea and predicted effects on a deep-sea neutrino telescope. Nucl Instrum Methods Phys Res A 602:224–226CrossRefGoogle Scholar
  20. Craig J, Jamieson AJ, Hutson R, Zuur AF, Priede IG (2010) Factors influencing the abundance of deep pelagic bioluminescent zooplankton in the Mediterranean Sea. Deep Sea Res I 57:1474–1484CrossRefGoogle Scholar
  21. Craig J, Jamieson AJ, Bagley PM, Priede IG (2011a) Naturally occurring bioluminescence on the deep sea floor. J Mar Syst 88(4):563–567CrossRefGoogle Scholar
  22. Craig J, Jamieson AJ, Bagley PM, Priede IG (2011b) Seasonal variation of deep-sea bioluminescence in the Ionian Sea. Nucl Instrum Methods Phys Res A. doi: 10.1016/j.nima.2010.04.074 CrossRefGoogle Scholar
  23. Craig J, Youngbluth M, Jamieson AJ, Priede IG (2015) Near seafloor bioluminescence, macrozooplankton and macroparticles at the Mid-Atlantic Ridge. Deep Sea Res I 98:62–75CrossRefGoogle Scholar
  24. Davis JW, Thosteson E, Frey L, Widder E (2005) Examination of bioluminescent excitation responses using empirical orthogonal function analysis. In: Proceedings of the MTS/IEEE OCEANS, pp 861–865Google Scholar
  25. Denton E (1990) Light and vision at depths greater than 200 metres. In: Herring PJ, Campbell AK, Whitfield M, Maddock L (eds) Light and life in the sea. Cambridge University Press, Cambridge, pp 127–148Google Scholar
  26. Folt CL, Burns CW (1999) Biological drivers of zooplankton patchiness. Trends Ecol Evol 14(8):300–305PubMedCrossRefGoogle Scholar
  27. Gagnon YL, Sutton TT, Johnsen S (2013) Visual acuity in pelagic fishes and mollusks. Vis Res 92:1–9PubMedCrossRefGoogle Scholar
  28. Gillibrand E, Jamieson A, Bagley P, Zuur A, Priede I (2007) Seasonal development of a deep pelagic bioluminescent layer in the temperate NE Atlantic ocean. Mar Ecol Prog Ser 341:37–44CrossRefGoogle Scholar
  29. Haddock SH, Moline MA, Case JF (2010) Bioluminescence in the sea. Annu Rev Mar Sci 2:443–493CrossRefGoogle Scholar
  30. Heger A, Ieno E, King N, Morris K, Bagley P, Priede I (2008) Deep-sea pelagic bioluminescence over the Mid-Atlantic Ridge. Deep Sea Res II 55(1):126–136CrossRefGoogle Scholar
  31. Herren CM, Alldredge AL, Case JF (2004) Coastal bioluminescent marine snow: fine structure of bioluminescence distribution. Cont Shelf Res 24(3):413–429CrossRefGoogle Scholar
  32. Herren CM, Haddock SH, Johnson C, Orrico CM, Moline MA, Case JF (2005) A multi-platform bathyphotometer for fine-scale, coastal bioluminescence research. Limnol Oceanogr Methods 3:247–262CrossRefGoogle Scholar
  33. Herring P (1983) The spectral characteristics of luminous marine organisms. Proc R Soc Lond B Biol Sci 220(1219):183–217CrossRefGoogle Scholar
  34. Herring PJ (1987) Systematic distribution of bioluminescence in living organisms. J Biolumin Chemilumin 1(3):147–163PubMedCrossRefGoogle Scholar
  35. Herring PJ (1998) Bioluminescence: dolphins glow with the flow. Nature 393(6687):731–733CrossRefGoogle Scholar
  36. Johnsen S, Widder EA, Mobley CD (2004) Propagation and perception of bioluminescence: factors affecting counter illumination as a cryptic strategy. Biol Bull 207(1):1–16PubMedCrossRefGoogle Scholar
  37. Land MF (1990) Optics of the eyes of marine animals. In: Herring PJ, Campbell AK, Whitfield M, Maddock L (eds) Light and life in the sea. Cambridge University Press, Cambridge, pp 149–166Google Scholar
  38. Lapota D, Losee JR (1984) Observations of bioluminescence in marine plankton from the Sea of Cortez. J Exp Mar Biol Ecol 77(3):209–239CrossRefGoogle Scholar
  39. Latz MI, Bowlby MR, Case JF (1990) Recovery and stimulation of copepod bioluminescence. J Exp Mar Biol Ecol 136(1):1–22CrossRefGoogle Scholar
  40. Latz MI, Nauen JC, Rohr J (2004) Bioluminescence response of four species of dinoflagellates to fully developed pipe flow. J Plankton Res 26(12):1529–1546CrossRefGoogle Scholar
  41. Laver MB, Olsson MS, Edelman JL, Smith KL Jr (1985) Swimming rates of scavenging deep-sea amphipods recorded with a free-vehicle video camera. Deep Sea Res A 32(9):1135–1142CrossRefGoogle Scholar
  42. Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17(6):1245–1271CrossRefGoogle Scholar
  43. Lueck R (2001) Turbulence in the benthic boundary layer. In: Steele JH, Thorpe SA, Turekian KK (eds) Encyclopedia of ocean. Sciences Academic Press, San Diego, pp 3057–3063CrossRefGoogle Scholar
  44. Mazzei L, Marini S, Craig J, Aguzzi J, Fanelli E, Priede IG (2014) Automated video imaging system for counting deep-sea bioluminescence organisms events. In: ICPR workshop in computer vision for analysis of underwater imagery (CVAUI). IEEEGoogle Scholar
  45. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55(1):165–199PubMedCrossRefGoogle Scholar
  46. Nicol J (1958) Observations on luminescence in pelagic animals. J Mar Biol Assoc UK 37(03):705–752Google Scholar
  47. Nilsson DE, Warrant E, Johnsen S (2014) Computational visual ecology in the pelagic realm. Philos Trans R Soc Lond B Biol Sci 369(1636):20130038PubMedPubMedCentralCrossRefGoogle Scholar
  48. Piontkovski SA, Tokarev YN, Bitukov EP, Williams R, Kiefer DÝ (1997) The bioluminescent field of the Atlantic Ocean. Mar Ecol Prog Ser 156:33–41CrossRefGoogle Scholar
  49. Priede IG, Smith KL Jr, Armstrong JD (1990) Foraging behaviour of abyssal grenadier fish: inferences from acoustic tagging and tracking in the North Pacific Ocean. Deep Sea Res A 37(1):81–101CrossRefGoogle Scholar
  50. Priede I, Bagley P, Way S, Herring P, Partridge J (2006) Bioluminescence in the deep sea: free-fall lander observations in the Atlantic Ocean off Cape Verde. Deep Sea Res I 3(7):1272–1283CrossRefGoogle Scholar
  51. Priede IG, Jamieson A, Heger A, Craig J, Zuur AF (2008) The potential influence of bioluminescence from marine animals on a deep-sea underwater neutrino telescope array in the Mediterranean Sea. Deep Sea Res I 55(11):1474–1483CrossRefGoogle Scholar
  52. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/
  53. Roe HSJ (1988) Midwater biomass profiles over the Madeira abyssal plain and the contribution of copepods. Hydrobiologia 167(1):169–181CrossRefGoogle Scholar
  54. Roe HSJ, Domanski PA, Fasham MJ (1986) Great meteor east: an interim report on biological sampling and general relationship to physical oceanography. Institute of Oceanographic Sciences, report 225, 60 ppGoogle Scholar
  55. Salon S, Crise A, Van Loon A (2008) Dynamics of the bottom boundary layer. Contourites. Dev Sedimentol 60:83–98CrossRefGoogle Scholar
  56. Smith RC, Baker KS (1981) Optical properties of the clearest natural waters (200–800 nm). Appl Opt 20(2):177–184PubMedCrossRefGoogle Scholar
  57. Swift E, Biggley WH, Napora TA (1977) The bioluminescence emission spectra of Pyrosoma atlanticum, P. spinosum (tunicata), Euphausia tenera (crustacea) and Gonostoma sp. (pisces). J Mar Biol Assoc UK 57(03):817–823CrossRefGoogle Scholar
  58. Vacquié-Garcia J, Royer F, Dragon AC, Viviant M, Bailleul F, Guinet C (2012) Foraging in the darkness of the southern ocean: influence of bioluminescence on a deep diving predator. PLoS One 7(8):e43565PubMedPubMedCentralCrossRefGoogle Scholar
  59. van Haren H, de Jong M, Kooijman P (2015) Yearlong moored bioluminescence and current data at KM3NeT neutrino telescope sites in the deep Ionian Sea. Astropart Phys 67:1–7CrossRefGoogle Scholar
  60. Wagner H, Fröhlich E, Negishi K, Collin S (1998) The eyes of deep-sea fish II: functional morphology of the retina. Prog Retin Eye Res 17(4):637–685PubMedCrossRefGoogle Scholar
  61. Warrant E (2000) The eyes of deep-sea fishes and the changing nature of visual scenes with depth. Philos Trans R Soc Lond B Biol Sci 355(1401):1155–1159PubMedPubMedCentralCrossRefGoogle Scholar
  62. Warrant EJ, Locket NA (2004) Vision in the deep sea. Biol Rev 79(3):671–712PubMedCrossRefGoogle Scholar
  63. Webster M, Roos C, Roberts A, Okada A, Ohashi Y, O’Connor D, Mitiguy R, Matsuno S, March R, Learned J (1991) Mechanical stimulation of bioluminescence in the deep pacific ocean. Deep Sea Res A 38(2):201–217CrossRefGoogle Scholar
  64. Weikert H, Koppelmann R (1993) Vertical structural patterns of deep-living zooplankton in the NE Atlantic, the Levantine Sea and the Red Sea: a comparison. Oceanol Acta 16(2):163–177Google Scholar
  65. Weikert H, Koppelmann R (1996) Mid-water zooplankton profiles from the temperate ocean and partially landlocked seas. A re-evaluation of interoceanic differences. Oceanol Acta 19(6):657–664Google Scholar
  66. White SN, Chave AD, Reynolds GT (2002) Investigations of ambient light emission at deep-sea hydrothermal vents. J Geophys Res Solid Earth (1978–2012) 107(B1):EPM-1Google Scholar
  67. Widder EA (2010) Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 328(5979):704–708PubMedCrossRefGoogle Scholar
  68. Widder E, Bernstein S, Bracher D, Case J, Reisenbichler K, Torres J, Robison B (1989) Bioluminescence in the Monterey submarine canyon: image analysis of video recordings from a midwater submersible. Mar Biol 100(4):541–551CrossRefGoogle Scholar
  69. Wishner KF (1980a) The biomass of the deep-sea benthopelagic plankton. Deep Sea Res A 27(3–4):205–216Google Scholar
  70. Wishner KF (1980b) Aspects of the community ecology of deep-sea, benthopelagic plankton, with special attention to gymnopleid copepods. Mar Biol 60(2–3):179–187CrossRefGoogle Scholar
  71. Wren GG, May D (1997) Detection of submerged vessels using remote sensing techniques. Aust Def Force J 127:9–15Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jessica Craig
    • 1
    Email author
  • Imants G. Priede
    • 1
  • Jacopo Aguzzi
    • 2
  • Joan B. Company
    • 2
  • Alan J. Jamieson
    • 1
  1. 1.OceanlabUniversity of AberdeenNewburghUK
  2. 2.Institut de Ciències del Mar (ICM-CSIC)BarcelonaSpain

Personalised recommendations