Marine Biology

, Volume 162, Issue 9, pp 1705–1725 | Cite as

Temporal variation in intertidal community recruitment and its relationships to physical forcings, chlorophyll-a concentration and sea surface temperature

  • A. C. A. Mazzuco
  • R. A. Christofoletti
  • J. Pineda
  • V. R. Starczak
  • A. M. Ciotti
Original Paper

Abstract

We investigated the recruitment of intertidal barnacles and mussels at three temporal scales (months, weeks and days), and its relationships to physical forcings, chlorophyll-a concentration (Chla) and sea surface temperature (SST), at both a local (km) and a regional (10–100 km) resolution. The study was conducted in the South Brazilian Bight, a subtropical region influenced by upwelling and meteorological fronts, where recruitment rates were measured monthly, biweekly and daily, from 2012 to 2013 using artificial substrates fixed in the intertidal zone. The strength of the relationship between recruitment and physical forcings, Chla and SST depended on the temporal scale, with different trends observed for barnacles and mussels. Barnacle recruitment was positively correlated with wind speed and SST and negatively related to the wind direction, cold front events and Chla. Wind direction was positively correlated with mussel recruitment and negatively covaried with SST. We calculated net recruitment (NR) to estimate the differences in recruitment rates observed at longer time scales (months and weeks), with recruitment rates observed at shorter time scales (weeks and days), and found that NR varied in time and among taxa. These results suggest that wind-driven oceanographic processes might affect onshore abundance of barnacle larvae, causing the observed variation in recruitment. This study highlights the importance of oceanic–climatic variables as predictors of intertidal invertebrate recruitment and shows that climatic fluctuations might have different effects on rocky shore communities.

Supplementary material

227_2015_2689_MOESM1_ESM.rtf (227 kb)
Supplementary material 1 (RTF 227 kb)

References

  1. Almeida MJ, Queiroga H (2003) Physical forcing of onshore transport of crab megalopae in the northern Portuguese upwelling system. Estuar Coast Shelf Sci 57:1091–1102. doi:10.1016/S0272-7714(03)00012-X CrossRefGoogle Scholar
  2. Barth JA, Menge BA, Lubchenco J, Chan F, Bane JM, Kirincich AR, McManus MA, Nielsen KJ, Pierce SD, Washburn L (2007) Delayed upwelling alters nearshore coastal ocean ecosystems in the northern California current. Proc Natl Acad Sci USA 104(10):3719–3724. doi:10.1073/pnas.0700462104 CrossRefGoogle Scholar
  3. Bers AV, Wahl M (2004) The influence of natural surface microtopographies on fouling. Biofouling 20:43–51. doi:10.1080/08927010410001655533 CrossRefGoogle Scholar
  4. Bertness MD (1989) Intraspecific competition and facilitation in a northern acorn barnacle population. Ecology 70:257–268. doi:10.2307/1938431 CrossRefGoogle Scholar
  5. Bjørnstad ON, Grenfell BT (2001) Noisy clockwork: time series analysis of population fluctuations in animals. Science 293:638–643. doi:10.1126/science.1062226 CrossRefGoogle Scholar
  6. Broitman BR, Blanchette CA, Gaines SD (2005) Recruitment of intertidal invertebrates and oceanographic variability at Santa Cruz Island California. Limnol Oceanogr 50(5):1473–1479. doi:10.4319/lo.2005.50.5.1473 CrossRefGoogle Scholar
  7. Broitman BR, Mieszkowska N, Helmuth B, Blanchette CA (2008) Climate and recruitment of rocky shore intertidal invertebrates in the Eastern North Atlantic. Ecology 89(11):S81–S90. doi:10.1890/08-0635.1 CrossRefGoogle Scholar
  8. Caley MJ, Carr MH, Hixon MA, Hughes TP, Jones GP, Menge BA (1996) Recruitment and the local dynamics of open marine populations. Annu Rev Ecol Syst 27:477–500. doi:10.1146/annurev.ecolsys.27.1.477 CrossRefGoogle Scholar
  9. Campos EJD, Velhote D, Silveira ICA (2000) Shelf-break upwelling driven by Brazil current cyclonic meanders. Geophys Res Lett 27:751–754. doi:10.1029/1999GL010502 CrossRefGoogle Scholar
  10. Carbonel CAAH (2003) Modeling of upwelling-downwelling cycles caused by variable wind in a very sensitive coastal system. Cont Shelf Res 23:1559–1578. doi:10.1016/S0278-4343(03)00145-6 CrossRefGoogle Scholar
  11. Castelao RM, Barth JA (2006) Upwelling around Cabo Frio, Brazil: the importance of wind stress curl. Geophys Res Lett 33:L03602. doi:10.1029/2005GL025182 CrossRefGoogle Scholar
  12. Christofoletti RA, Takahashi CK, Oliveira DN, Flores AVA (2011) Abundance of sedentary consumers and sessile organisms along the wave exposure gradient of subtropical rocky shores of the south-west Atlantic. J Mar Biol Assoc UK 91:961–967. doi:10.1017/S0025315410001992 CrossRefGoogle Scholar
  13. Coale KH, Johnson KS, Fitzwater SE, Michael Gordon R, Tanner S, Chavez FP, Ferioli L, Sakamoto C, Rogers P, Millero F, Steinberg P, Nightingale P, Cooper D, Cochlan WP, Landry MR, Constantinou J, Rollwagen G, Trasvina A, Kudela R (1996) A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial pacific ocean. Nature 383:495–501. doi:10.1038/383495a0 CrossRefGoogle Scholar
  14. Connell JH (1985) The consequences of variation in initial settlement vs. post-settlement mortality in rocky intertidal communities. J Exp Mar Biol Ecol 93:11–45. doi:10.1016/0022-0981(85)90146-7 CrossRefGoogle Scholar
  15. Coutinho R, Zalmon IR (2009) O Bentos de costões rochosos. In: Pereira RC, Soares-Gomes A (eds) Biologia Marinha. Interciência, Rio de Janeiro, pp 281–298Google Scholar
  16. Crimaldi JP, Thompson JK, Rosman JH, Lowe RJ, Koseff JR (2002) Hydrodynamics of larval settlement: the influence of turbulent stress events at potential recruitment sites. Limnol Oceanogr 47:1137–1151. doi:10.4319/lo.2002.47.4.1137 CrossRefGoogle Scholar
  17. Crisp DJ (1976) Settlement responses in marine organisms. In: Newell RC (ed) Adaptation to environment: essay on the physiology of marine animals. Butterworths, London, pp 83–123CrossRefGoogle Scholar
  18. Desai VD, Anil AC, Venkat K (2006) Reproduction in Balanus amphitrite Darwin (Cirripedia: thoracica): influence of temperature and food concentration. Mar Biol 149:1431–1441. doi:10.1007/s00227-006-0315-3 CrossRefGoogle Scholar
  19. Dobretsov SV, Miron G (2001) Larval and post-larval vertical distribution of the mussel Mytilus edulis in the white sea. Mar Ecol Prog Ser 218:179–187. doi:10.3354/meps218179 CrossRefGoogle Scholar
  20. Dudas SE, Grantham BA, Kirincich AR, Menge BA, Lubchenco J, Barth JA (2009) Current reversals as determinants of intertidal recruitment on the central Oregon coast. ICES J Mar Sci 66:396–407. doi:10.1093/icesjms/fsn179 CrossRefGoogle Scholar
  21. Eckman JE, Savidge WB, Gross TF (1990) Relationship between duration of cyprid attachment and drag forces associated with detachment of Balanus amphitrite cyprids. Mar Biol. doi:10.1007/BF01313248 Google Scholar
  22. Franchito SH, Oda TO, Rao VB, Kayano MT (2008) Interaction between coastal upwelling and local winds at Cabo Frio, Brazil: an observational study. J Appl Meteorol Climatol 47:1590–1598. doi:10.1175/2007JAMC1660.1 CrossRefGoogle Scholar
  23. Gallucci F, Netto SA (2004) Effects of the passage of cold fronts over a coastal site: an ecosystem approach. Mar Ecol Prog Ser 281:79–92. doi:10.3354/meps281079 CrossRefGoogle Scholar
  24. Garcia L (2004) Escaping the bonferroni iron claw in ecological studies. Oikos 105:657–663. doi:10.1111/j.0030-1299.2004.13046.x CrossRefGoogle Scholar
  25. Garland ED, Zimmer CA, Lentz SJ (2002) Larval distributions in inner-shelf waters: the roles of wind-driven cross-shelf currents and diel vertical migrations. Limnol Oceanogr 47:803–817. doi:10.4319/lo.2002.47.3.0803 CrossRefGoogle Scholar
  26. Gonzalez-Rodriguez E, Valentin JL, André DL, Jacob SA (1992) Upwelling and downwelling at Cabo Frio (Brazil). J Plankton Res 14(2):289–306. doi:10.1093/plankt/14.2.289 CrossRefGoogle Scholar
  27. Graham KR, Sebens KP (1996) The distribution of marine invertebrate larvae near vertical surfaces in the rocky subtidal zone. Ecology 77(3):933–949. doi:10.2307/2265513 CrossRefGoogle Scholar
  28. Gyory J, Pineda J (2011) High-frequency observations of early-stage larval abundance: do winter storms trigger synchronous larval release in Semibalanus balanoides? Mar Biol 158:1581–1589. doi:10.1007/s00227-011-1671-1 CrossRefGoogle Scholar
  29. Harley CD, Randall Hughes A, Hultgren KM, Miner BG, Sorte CJ, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241. doi:10.1111/j.1461-0248.2005.00871.x CrossRefGoogle Scholar
  30. Hines AH (1979) The comparative reproductive ecology of three species of intertidal barnacles. In: Stancyk SE (ed) Reproductive ecology of marine invertebrates. University of South Carolina Press, Columbia, pp 213–234Google Scholar
  31. Hoegh-Guldberg O, Pearse JS (1995) Temperature, food availability, and the development of marine invertebrate larvae. Am Zool 35(4):415–425. doi:10.1093/icb/35.4.415 CrossRefGoogle Scholar
  32. Hunt HL, Scheibling RE (1997) Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Mar Ecol Prog Ser 155:269–301. doi:10.3354/meps155269 CrossRefGoogle Scholar
  33. Iles AC, Gouhier TC, Menge BA, Stewart JS, Haupt AJ, Lynch MC (2012) Climate-driven trends and ecological implications of event-scale upwelling in the California current system. Glob Change Biol 18:783–796. doi:10.1111/j.1365-2486.2011.02567.x CrossRefGoogle Scholar
  34. Jacinto D, Cruz T (2008) Tidal settlement of the intertidal barnacles Chthamalus spp. in SW Portugal: interaction between diel and semi-lunar cycles. Mar Ecol Prog Ser 366:129–135. doi:10.3354/meps07516 CrossRefGoogle Scholar
  35. Jenkins SR, Hawkins SJ (2003) Barnacle larval supply to sheltered rocky shores: a limiting factor? Hydrobiologia 503:143–151. doi:10.1023/B:HYDR.0000008496.68710.22 CrossRefGoogle Scholar
  36. Jenkins SR, Murua J, Burrows MT (2008) Temporal changes in the strength of density-dependent mortality and growth in intertidal barnacles. J Anim Ecol 77:573–584. doi:10.1111/j.1365-2656.2008.01366.x CrossRefGoogle Scholar
  37. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–472. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  38. Keough MJ, Downes BJ (1982) Recruitment of marine invertebrates: the role of active larval choices and early mortality. Oecologia 54:348–352. doi:10.1007/BF00380003 CrossRefGoogle Scholar
  39. Kinlan BP, Gaines SD (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84:2007–2020. doi:10.1890/01-0622 CrossRefGoogle Scholar
  40. Knight-Jones EW, Stevenson JP (1950) Gregariousness during settlement in the barnacle Elminius modestus Darwin. J Mar Biol Assoc 29:281–297. doi:10.1017/S0025315400055375 CrossRefGoogle Scholar
  41. Lathlean JA, Ayre DJ, Minchinton TE (2010) Supply-side biogeography: geographic patterns of settlement and early mortality for a barnacle approaching its range limit. Mar Ecol Prog Ser 412:141–150. doi:10.3354/meps08702 CrossRefGoogle Scholar
  42. Le Corre N, Martel AL, Guichard F, Johnson LE (2013) Variation in recruitment: differentiating the roles of primary and secondary settlement of blue mussels Mytilus spp. Mar Ecol Prog Ser 481:133–146. doi:10.3354/meps10216 CrossRefGoogle Scholar
  43. Acker JG, Leptoukh, G (2007) Online analysis enhances use of NASA earth science data. Eos Trans AGU 88(2):14–17. doi: 10.1029/2007EO020003
  44. Leslie HM, Breck EN, Chan F, Lubchenco J, Menge BA (2005) Barnacle reproductive hotspots linked to nearshore ocean conditions. Proc Natl Acad Sci USA 102(30):10534–10539. doi:10.1073/pnas.0503874102 CrossRefGoogle Scholar
  45. Lorenzzetti JA, Stech JL, Mello Filho WL, Assireu AT (2009) Satellite observation of Brazil current inshore thermal front in the SW South Atlantic: space/time variability and sea surface temperatures. Cont Shelf Res 29:2061–2068. doi:10.1016/j.csr.2009.07.011 CrossRefGoogle Scholar
  46. Ma HG, Grassle JP (2004) Invertebrate larval availability during summer upwelling and downwelling on the inner continental shelf off New Jersey. J Mar Res 62:837–865. doi:10.1357/0022240042880882 CrossRefGoogle Scholar
  47. Marshall D, Krug PJ, Kupriyanova EK, Byrne M, Emlet RB (2012) The biogeography of marine invertebrate life histories. Annu Rev Ecol Evol Syst 43:97–114. doi:10.1146/annurev-ecolsys-102710-145004 CrossRefGoogle Scholar
  48. Mcculloch A, Shanks AL (2003) Topographically generated fronts, very nearshore oceanography and the distribution and settlement of mussel larvae and barnacle cyprids. J Plankton Res 25(11):1427–1439. doi:10.1093/plankt/fbg098 CrossRefGoogle Scholar
  49. McQuaid CD, Lindsay TL (2000) Effect of wave exposure on growth and mortality rates of the mussel Perna perna: bottom-up regulation of intertidal populations. Mar Ecol Prog Ser 206:147–154. doi:10.3354/meps206147 CrossRefGoogle Scholar
  50. McQuaid CD, Phillips TE (2000) Limited wind-driven dispersal of intertidal mussel larvae: in situ evidence from the plankton and the spread of the invasive species Mytilus galloprovincialis in South Africa. Mar Ecol Prog Ser 201:211–220. doi:10.3354/meps201211 CrossRefGoogle Scholar
  51. Menge BA, Branch GM (2001) Rocky intertidal communities. In: Bertness MA, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer, Sunderland, pp 221–252Google Scholar
  52. Menge BA, Chan F, Nielsen KJ, Di Lorenzo E, Lubchenco J (2009) Climatic variation alters supply-side ecology: impact of climate patterns on phytoplankton and mussel recruitment. Ecol Monogr 79:379–395. doi:10.1890/08-2086.1 CrossRefGoogle Scholar
  53. Menge BA, Gouhier TC, Freidenburg T, Lubchenco J (2011) Linking long-term, large-scale climatic and environmental variability to patterns of marine invertebrate recruitment: toward explaining “unexplained” variation. J Exp Mar Biol Ecol 400:236–249. doi:10.1016/j.jembe.2011.02.003 CrossRefGoogle Scholar
  54. Mesquita EFM, Abreu MG, Lima FC (2001) Ciclo reprodutivo do mexilhão Perna perna (Linnaeus) (Molusca, Bivalvia) da Lagoa de Itaipu, Niterói, Rio de Janeiro Brasil. Rev Bras Zool 18(2):631–636. doi:10.1590/S0101-81752001000200029 CrossRefGoogle Scholar
  55. Michener WK, Kenny PD (1991) Spatial and temporal patterns of Crassostrea virginica (Gmelin) recruitment: relationship to scale and substratum. J Exp Mar Biol Ecol 154:97–121. doi:10.1016/0022-0981(91)90077-A CrossRefGoogle Scholar
  56. Minchinton TE, Scheibling RE (1993) Free space availability and larval substratum selection as determinants of barnacle population structure in a developing rocky intertidal community. Mar Ecol Prog Ser 95:233–244CrossRefGoogle Scholar
  57. Miron G, Boudreau B, Bourget E (1995) Use of larval supply in benthic ecology: testing correlation between larval supply and larval settlement. Mar Ecol Prog Ser 124:301–305. doi:10.3354/meps124301 CrossRefGoogle Scholar
  58. Miron G, Boudreau B, Bourget E (1999) Intertidal barnacle distribution: a case study using multiple working hypotheses. Mar Ecol Prog Ser 189:205–219. doi:10.3354/meps189205 CrossRefGoogle Scholar
  59. Morgan SG, Fisher JL (2010) Larval behavior regulates nearshore retention and offshore migration in an upwelling shadow and along the open coast. Mar Ecol Prog Ser 404:109–126. doi:10.3354/meps08476 CrossRefGoogle Scholar
  60. Morgan SG, Fisher JL, Miller SH, McAfee ST, Largier J (2009) Nearshore larval retention in a region of strong upwelling and recruitment limitation. Ecology 90:3489–3502. doi:10.1890/08-1550.1 CrossRefGoogle Scholar
  61. Narváez DA, Navarrete SA, Largier J, Vargas CA (2006) Onshore advection of warm water, larval invertebrate settlement, and relaxation of upwelling off central Chile. Mar Ecol Progr Ser 309:159–173. doi:10.3354/meps309159 CrossRefGoogle Scholar
  62. Narváez M, Freites L, Guevara M, Mendonza J, Guderley H, Lodeiros CJ, Salazar G (2007) Food availability and reproduction affects lipid and fatty acid composition of the brown mussel, Perna perna, raised in suspension culture. Comp Biochem Physiol 149:293–302. doi:10.1016/j.cbpb.2007.09.018 CrossRefGoogle Scholar
  63. Nasrolahi A, Pansch C, Lenz M (2013) Temperature and salinity interactively impact early juvenile development: a bottleneck in barnacle ontogeny. Mar Biol 160:1109–1117. doi:10.1007/s00227-012-2162-8 CrossRefGoogle Scholar
  64. Navarrete SA, Broitman BR, Menge BA (2008) Interhemispheric comparison of recruitment to intertidal communities: pattern persistence and scales of variation. Ecology 89(5):1308–1322. doi:10.1890/07-0728.1 CrossRefGoogle Scholar
  65. Okubo A (1994) The role of diffusion and related physical processes in dispersal and recruitment of marine populations. In: Sammarco PW, Heron ML (eds) The bio-physics of marine larval dispersal. American Geophysical Union, Washington, D.C., pp 5–34CrossRefGoogle Scholar
  66. Olivier F, Tremblay R, Bourget E, Riitschof D (2000) Barnacle settlement: field experiments on the influence of larval supply, tidal level, biofilm quality and age on Balanus amphitrite cyprids. Mar Ecol Prog Ser 199:185–204. doi:10.3354/meps199185 CrossRefGoogle Scholar
  67. Otero J, Álvarez-Salgado XA, González AF, Gilcoto M, Guerra A (2009) High-frequency coastal upwelling events influence Octopus vulgaris larval dynamics on the NW Iberian shelf. Mar Ecol Prog Ser 386:123–132. doi:10.3354/meps08041 CrossRefGoogle Scholar
  68. Parmesan C, Root TL, Willig MR (2000) Impacts of extreme weather and climate on terrestrial biota. Bull Am Meteorol Soc 81:443–450. doi:10.1175/1520-0477(2000)081<0443:IOEWAC>2.3.CO;2 CrossRefGoogle Scholar
  69. Pechenik JA (2006) Larval experience and latent effects—metamorphosis is not a new beginning. Integrative and Comparative Biology. J Integr Comp Biol 47:1–11. doi:10.1093/icb/icj028 Google Scholar
  70. Pfaff MC, Branch GM, Wieters EA, Branch RA, Broitman BR (2011) Upwelling intensity and wave exposure determine recruitment of intertidal mussels and barnacles in the southern Benguela upwelling region. Mar Ecol Prog Ser 425:141–152. doi:10.3354/meps09003 CrossRefGoogle Scholar
  71. Phillips NE (2002) Effects of nutrition-mediated larval condition on juvenile performance in a marine mussel. Ecology 83(9):2562–2574. doi:10.2307/3071815 CrossRefGoogle Scholar
  72. Pianca C, Mazzini PLF, Siegle E (2010) Brazilian offshore wave climate based on NWW3 reanalysis. Braz J Oceanogr 58(1):53–70. doi:10.1590/S1679-87592010000100006 CrossRefGoogle Scholar
  73. Pike N (2011) Using false discovery rates for multiple comparisons in ecology and evolution. Methods Ecol Evol 2:278–282. doi:10.1111/j.2041-210X.2010.00061.x CrossRefGoogle Scholar
  74. Pineda J (2000) Linking larval settlement to larval transport: assumptions, potentials, and pitfalls. Oceanogr E Pac 1:84–105Google Scholar
  75. Pineda J, Caswell H (1997) Dependence of settlement rate on suitable substrate area. Mar Biol 129:541–548. doi:10.1007/s002270050195 CrossRefGoogle Scholar
  76. Pineda J, López M (2002) Temperature, stratification and barnacle larval settlement in two Californian sites. Cont Shelf Res 22:1183–1198. doi:10.1016/S0278-4343(01)00098-X CrossRefGoogle Scholar
  77. Pineda J, Reyns NB, Starczak VR (2009) Complexity and simplification in understanding recruitment in benthic populations. Popul Ecol 51:17–32. doi:10.1007/s10144-008-0118-0 CrossRefGoogle Scholar
  78. Porri F, McQuaid CD, Radloff S (2006) Spatio-temporal variability of larval abundance and settlement of Perna perna: differential delivery of mussels. Mar Ecol Prog Ser 315:141–150. doi:10.3354/meps315141 CrossRefGoogle Scholar
  79. Porri F, Jackson JM, Von der Meden CE, Weidberg N, McQuaid CD (2014) The effect of mesoscale oceanographic features on the distribution of mussel larvae along the south coast of South Africa. J Mar Syst 132:162–173. doi:10.1016/j.jmarsys.2014.02.001 CrossRefGoogle Scholar
  80. Qiu JW, Qian PY (1999) Tolerance of the barnacle Balanus amphitrite amphitrite to salinity and temperature stress: effects of previous experience. Mar Ecol Prog Ser 188:123–132. doi:10.3354/meps188123 CrossRefGoogle Scholar
  81. Queiroga H, Cruz T, Santos A, Dubert J, González-Gordillo JI, Paula J, Peliz A, Santos AMP (2007) Oceanographic and behavioural processes affecting invertebrate larval dispersal and supply in the western Iberia upwelling ecosystem. Prog Oceanogr 74:174–191. doi:10.1016/j.pocean.2007.04.007 CrossRefGoogle Scholar
  82. Range P, Paula J (2001) Distribution, abundance and recruitment of Chthamalus (Crustacea: cirripedia) populations along the central coast of Portugal. J Mar Biol Assoc UK 81:461–468. doi:10.1017/S002531540100409X CrossRefGoogle Scholar
  83. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496. doi:10.1175/2007JCLI1824.1 CrossRefGoogle Scholar
  84. Rilov G, Dudas SE, Menge BA, Grantham BA, Lubchenco J, Schiel DR (2008) The surf zone: a semi-permeable barrier to onshore recruitment of invertebrate larvae? J Exp Mar Biol Ecol 361:59–74. doi:10.1016/j.jembe.2008.04.008 CrossRefGoogle Scholar
  85. Roughgarden J, Iwasa Y, Baxter C (1985) Demographic theory for an open marine population with space-limited recruitment. Ecology 66:54–57. doi:10.2307/1941306 CrossRefGoogle Scholar
  86. Roughgarden J, Gaines S, Possingham H (1988) Recruitment dynamics in complex life cycles. Science 241:1460–1466. doi:10.1126/science.11538249 CrossRefGoogle Scholar
  87. Sanford E, Menge BA (2001) Spatial and temporal variation in barnacle growth in a coastal upwelling system. Mar Ecol Prog Ser 209:143–157. doi:10.3354/meps209143 CrossRefGoogle Scholar
  88. Santos A, Santos AMP, Conway DVP (2007) Horizontal and vertical distribution of cirripede cyprid larvae in an upwelling system off the Portuguese coast. Mar Ecol Prog Ser 329:145–155. doi:10.3354/meps329145 CrossRefGoogle Scholar
  89. Satuito CG, Shimizu K, Fusetani N (1997) Studies on the factors influencing larval settlement in Balanus amphitrite and Mytilus galloprovincialis. Hydrobiologia 358:275–280. doi:10.1023/A:1003109625166 CrossRefGoogle Scholar
  90. Schlitzer R (2013) Ocean data view. http://odv.awi.de
  91. Schmunk RB (2013). Panoply 3.2.1. http://www.giss.nasa.gov/tools/panoply/
  92. Shanks AL, Brink L (2005) Upwelling, downwelling, and cross-shelf transport of bivalve larvae: test of a hypothesis. Mar Ecol Prog Ser 302:1–12. doi:10.3354/meps302001 CrossRefGoogle Scholar
  93. Shanks AL, Shearman RK (2009) Paradigm lost? Cross-shelf distributions of intertidal invertebrate larvae are unaffected by upwelling or downwelling. Mar Ecol Prog Ser 385:189–204. doi:10.3354/meps08043 CrossRefGoogle Scholar
  94. Skinner LF, Coutinho R (2002) Preliminary results on settlement of barnacles Tetraclita stalactifera and Chthamalus bisinuatus on a Brazilian tropical rocky shore under upwelling conditions. Invertebr Reprod Dev 41:151–156. doi:10.1080/07924259.2002.9652746 CrossRefGoogle Scholar
  95. Sokal R, Rohlf FJ (2003) Biometry: the principles and practice of statistics in biological research. WH Freeman and Company, New YorkGoogle Scholar
  96. Starr M, Himmelman JH, Therriault J-C (1991) Coupling of nauplii release in barnacles with phytoplankton blooms: a parallel strategy to that of spawning in urchins and mussels. J Plankton Res 13:561–571. doi:10.1093/plankt/13.3.561 CrossRefGoogle Scholar
  97. Stech JL, Lorenzzetti JA (1992) The response of the South Brazil Bight to the passage of wintertime cold fronts. J Geophys Res 97(C6):9507–9520. doi:10.1029/92JC00486 CrossRefGoogle Scholar
  98. Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan K-S, Lima M (2002) Ecological effects of climate fluctuations. Science 297:1292–1296. doi:10.1126/science.1071281 CrossRefGoogle Scholar
  99. Stevenson MR, Dias-Brito D, Stech JL, Kampel M (1998) How do cold water biota arrive in a tropical bay near Rio de Janeiro, Brazil. Cont Shelf Res 18:1595–1612. doi:10.1016/S0278-4343(98)00029-6 CrossRefGoogle Scholar
  100. Tapia FJ, Navarrete SA (2010) Spatial patterns of barnacle settlement in central Chile: persistence at daily to inter-annual scales relative to the spatial signature of physical variability. J Exp Mar Biol Ecol 392:151–159. doi:10.1016/j.jembe.2010.04.031 CrossRefGoogle Scholar
  101. Tapia F, Pineda J, Ocampo-Torres F, Fuchs H, Parnell E, Montero P, Ramos S (2004) High-frequency observations of wind-forced onshore transport at a coastal site in Baja California. Cont Shelf Res 24:1573–1585. doi:10.1016/j.csr.2004.03.013 CrossRefGoogle Scholar
  102. Tapia FJ, DiBacco C, Jarrett J, Pineda J (2010) Vertical distribution of barnacle larvae at a fixed nearshore station in southern California: stage-specific and diel patterns. Estuar Coast Shelf S 86:265–270. doi:10.1016/j.ecss.2009.11.003 CrossRefGoogle Scholar
  103. Thiyagarajan V, Hung OS, Chiu JMY, Wu RSS, Qian PY (2005) Growth and survival of juvenile barnacle Balanus amphitrite: interactive effects of cyprid energy reserve and habitat. Mar Ecol Prog Ser 299:229–237. doi:10.3354/meps299229 CrossRefGoogle Scholar
  104. Valentin JL, André DL, Jacob SA (1987) Hydrobiology in the Cabo Frio (Brazil) upwelling: two-dimensional structure and variability during a wind cycle. Cont Shelf Res 7(1):77–88. doi:10.1016/0278-4343(87)90065-3 CrossRefGoogle Scholar
  105. Van Ekon Schurink C, Griffiths CL (1991) A comparison of reproductive cycles and reproductive output in four southern African mussel species. Mar Ecol Prog Ser 76:123–134. doi:10.3354/meps076123 CrossRefGoogle Scholar
  106. Verhoeven JF, Simonsen KL, McIntyre L (2005) Implementing false discovery rate control: increasing your power. Oikos 108:643–647. doi:10.1111/j.0030-1299.2005.13727.x CrossRefGoogle Scholar
  107. Walther GR, Post P, Convey P, Menzel A, Parmesank C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395. doi:10.1038/416389a CrossRefGoogle Scholar
  108. Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39:1985–1992. doi:10.4319/lo.1994.39.8.1985 CrossRefGoogle Scholar
  109. Wethey DS, Woodin SA, Hilbish TJ, Jones SJ, Lima FP, Brannock PM (2011) Response of intertidal populations to climate: effects of extreme events versus long term change. J Exp Mar Biol Ecol 400:132–144. doi:10.1016/j.jembe.2011.02.008 CrossRefGoogle Scholar
  110. Wieczorek SK, Todd CD (1998) Inhibition and facilitation of settlement of epifaunal marine invertebrate larvae by microbial biofilm cues. Biofouling 12:81–118. doi:10.1080/08927019809378348 CrossRefGoogle Scholar
  111. Wieters EA, Kaplan DM, Navarrete SA, Sotomayor A, Largier J, Nielsen KJ, Véliz F (2003) Alongshore and temporal variability in chlorophyll a concentration in Chilean nearshore waters. Mar Ecol Prog Ser 249:93–105. doi:10.3354/meps249093 CrossRefGoogle Scholar
  112. Woodson CB, McManus MA, Tyburczy JA, Barth JA, Washburn L, Caselle JE, Carr MH, Malone DP, Raimondi PT, Menge BA, Palumbi SR (2012) Coastal fronts set recruitment and connectivity patterns across multiple taxa. Limnol Oceanogr 57(2):582–596. doi:10.4319/lo.2012.57.2.0582 CrossRefGoogle Scholar
  113. Yoshinagua MY, Sumida PYG, Silveira ICA, Ciotti AM, Gaeta SA, Pacheco LFCM, Koettker AG (2010) Vertical distribution of benthic invertebrate larvae during an upwelling event along a transect off the tropical Brazilian continental margin. J Mar Syst 79:124–133. doi:10.1016/j.jmarsys.2009.07.007 CrossRefGoogle Scholar
  114. Young CM (1995) Behavior and locomotion during the dispersal phase of life cycle. In: McEdward L (ed) Ecology of marine invertebrate larvae. CRC Press, Boca Raton, pp 249–277Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. C. A. Mazzuco
    • 1
  • R. A. Christofoletti
    • 2
  • J. Pineda
    • 3
  • V. R. Starczak
    • 3
  • A. M. Ciotti
    • 1
  1. 1.Aquarela LaboratoryCEBIMar/USP (Marine Biology Center/University of São Paulo)São SebastiãoBrazil
  2. 2.IMar/UNIFESP (Marine Institute/Federal University of São Paulo)SantosBrazil
  3. 3.Benthic Ecology Laboratory, Biology DepartmentWHOI (Woods Hole Oceanographic Institution)Woods HoleUSA

Personalised recommendations