Marine Biology

, Volume 162, Issue 6, pp 1371–1382 | Cite as

Effects of food and CO2 on growth dynamics of polyps of two scyphozoan species (Cyanea capillata and Chrysaora hysoscella)

  • Thomas J. Lesniowski
  • Maria Gambill
  • Sabine Holst
  • Myron A. Peck
  • María Algueró-Muñiz
  • Mathias Haunost
  • Arne M. Malzahn
  • Maarten Boersma
Original Article


Increasing anthropogenic CO2 concentration in the atmosphere is altering sea water carbonate chemistry with unknown biological and ecological consequences. Whereas some reports are beginning to emerge on the effects of ocean acidification (OA) on fish, very little is known about the impact of OA on jellyfish. In particular, the benthic stages of metagenetic species are virtually unstudied in this context despite their obvious importance for bloom dynamics. Hence, we conducted tri-trophic food chain experiments using the algae Rhodomonas salina as the primary producer, the copepod Acartia tonsa as the primary consumer and the benthic life stage of the scyphozoans Cyanea capillata and Chrysaora hysoscella as secondary consumers. Two experiments were conducted examining the effects of different levels of CO2 and food quality (experiment 1) and the effect of food quality and quantity (experiment 2) on the growth and respiration of scyphozoan polyps. Polyp growth and carbon content (µg polyp−1) were not affected by the CO2 treatments, but were significantly negatively affected by P limitation of the food in C. capillata but not in Ch. hysoscella. Growth and carbon content were reduced in low-food treatments, but increased with decreasing P limitation in high- and low-food treatments in C. capillata. Respiration was not significantly influenced by food quality and quantity in C. capillata. We conclude that phosphorus can be a limiting factor affecting the fitness of scyphopolyps and that P-limited food is of poor nutritional quality. Furthermore, OA, at least using realistic end-of-century scenarios, will have no direct effect on the growth of scyphistomae.


Food Quality Ocean Acidification Food Quantity Secondary Consumer Gelatinous Zooplankton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful for the support of our colleagues, particularly Katherina L. Schoo and Cédric L. Meunier. Special thanks are due to Bettina Oppermann, Julia Haafke, Saskia Ohse and Petra Schneider for technical support. This project was funded in part by the Deutsche Forschungsgemeinschaft (DFG) project “Physical and Physiological Growth Constraints of Key, North Sea Gelatinous Zooplankton” (MA 4501/3-1 and PE 1157/3-1). This study was also part of the BIOACID Project (03F0655A), funded by the German Federal Ministry of Education and Research (BMBF).


  1. Attrill MJ, Edwards M (2008) Reply to Haddock, S. H. D. Reconsidering evidence for potential climate-related increases in jellyfish. Limnol Oceanogr 53:2763–2766Google Scholar
  2. Attrill MJ, Wright J, Edwards M (2007) Climate-related increases in jellyfish frequency suggest a more gelatinous future for the North Sea. Limnol Oceanogr 52:480–485CrossRefGoogle Scholar
  3. Barz K, Hirche HJ (2007) Abundance, distribution and prey composition of scyphomedusae in the southern North Sea. Mar Biol 151:1021–1033CrossRefGoogle Scholar
  4. Bastian T, Haberlin D, Purcell JE, Hays GC, Davenport J, McAllen R, Doyle TK (2011) Large-scale sampling reveals the spatio-temporal distributions of the jellyfish Aurelia aurita and Cyanea capillata in the Irish Sea. Mar Biol 158:2639–2652CrossRefGoogle Scholar
  5. Baumann H, Talmage SC, Gobler CJ (2012) Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nat Clim Change 2:38–41CrossRefGoogle Scholar
  6. Boero F, Bouillon J, Gravili C, Miglietta MP, Parsons T, Piraino S (2008) Gelatinous plankton: irregularities rule the world (sometimes). Mar Ecol Prog Ser 356:299–310CrossRefGoogle Scholar
  7. Boersma M (2000) The nutritional quality of P-limited algae for Daphnia. Limnol Oceanogr 45:1157–1161CrossRefGoogle Scholar
  8. Boersma M, Kreutzer C (2002) Life at the edge: is food quality really of minor importance at low quantities? Ecology 83:2552–2561CrossRefGoogle Scholar
  9. Boersma M, Aberle N, Hantzsche FM, Schoo KL, Wiltshire KH, Malzahn AM (2008) Nutritional limitation travels up the food chain. Int Rev Hydrobiol 93:479–488CrossRefGoogle Scholar
  10. Bradshaw AL, Brewer PG, Shafer DK, Williams RT (1981) Measurements of total carbon-dioxide and alkalinity by potentiometric titration in the GEOSECS program. Earth Planet Sci Lett 55:99–115CrossRefGoogle Scholar
  11. Brewer RH (1976) Larval settling behavior in Cyanea capillata (Cnidaria: Scyphozoa). Biol Bull 150:183–199CrossRefGoogle Scholar
  12. Brotz L, Cheung WWL, Kleisner K, Pakhomov E, Pauly D (2012) Increasing jellyfish populations: trends in large marine ecosystems. Hydrobiologia 690:3–20CrossRefGoogle Scholar
  13. Condon RH, Decker MB, Purcell JE (2001) Effects of low dissolved oxygen on survival and asexual reproduction of scyphozoan polyps (Chrysaora quinquecirrha). Hydrobiologia 451:89–95CrossRefGoogle Scholar
  14. Condon RH, Steinberg DK, del Giorgio PA, Bouvier TC, Bronk DA, Graham WM, Ducklow HW (2011) Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. Proc Natl Acad Sci USA 108:10225–10230CrossRefGoogle Scholar
  15. Condon RH, Graham WM, Duarte CM, Pitt KA, Lucas CH, Haddock SHD, Sutherland KR, Robinson KL, Dawson MN, Decker MB, Mills CE, Purcell JE, Malej A, Mianzan H, Uye SI, Gelcich S, Madin LP (2012) Questioning the rise of gelatinous zooplankton in the world’s oceans. Bioscience 62:160–169CrossRefGoogle Scholar
  16. Darchambeau F, Faerovig PJ, Hessen DO (2003) How Daphnia copes with excess carbon in its food. Oecologia 136:336–346CrossRefGoogle Scholar
  17. Dickson AG (1990) Standard potential of the reaction: AgCl(s) + 1/2H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4− in synthetic sea water from 273.15 to 218.15 K. J Chem Thermodyn 22:113–127CrossRefGoogle Scholar
  18. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res A 34:1733–1743CrossRefGoogle Scholar
  19. Elser JJ, Dobberfuhl DR, Mackay NA, Schampel JH (1996) Organism size, life history, and N:P stoichiometry. Bioscience 46:674–684CrossRefGoogle Scholar
  20. Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142CrossRefGoogle Scholar
  21. Frommel AY, Maneja R, Lowe D, Malzahn AM, Geffen AJ, Folkvord A, Piatkowski U, Reusch TBH, Clemmesen C (2012) Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nat Clim Change 2:42–46CrossRefGoogle Scholar
  22. Frommel AY, Maneja R, Lowe D, Pascoe CK, Geffen AJ, Folkvord A, Piatkowski U, Clemmesen C (2014) Organ damage in Atlantic herring larvae as a result of ocean acidification. Ecol Appl 24:1131–1143CrossRefGoogle Scholar
  23. Gambill M, Peck MA (2014) Respiration rates of the polyps of four jellyfish species: potential thermal triggers and limits. J Exp Mar Biol Ecol 459:17–22CrossRefGoogle Scholar
  24. Gattuso JP, Hansson L (2011) Ocean acidification. Oxford University Press Inc, New YorkGoogle Scholar
  25. Gattuso JP, Mach KJ, Morgan G (2013) Ocean acidification and its impacts: an expert survey. Clim Change 117:725–738CrossRefGoogle Scholar
  26. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) gran. Can J Microb 8:229–239CrossRefGoogle Scholar
  27. Haddock SHD (2008) Reconsidering evidence for potential climate-related increases in jellyfish. Limnol Oceanogr 53:2759–2762Google Scholar
  28. Hay SJ, Hislop JRG, Shanks AM (1990) North Sea scyphomedusae; summer distribution, estimated biomass and significance particulary for 0-group gadoid fish. Neth J Sea Res 25:113–130CrossRefGoogle Scholar
  29. Hessen DO, Agren GI, Anderson TR, Elser JJ, De Ruiter PC (2004) Carbon, sequestration in ecosystems: the role of stoichiometry. Ecology 85:1179–1192CrossRefGoogle Scholar
  30. Hofmann GE, Smith JE, Johnson KS, Send U, Levin LA, Micheli F, Paytan A, Price NN, Peterson B, Takeshita Y, Matson PG, Crook ED, Kroeker KJ, Gambi MC, Rivest EB, Frieder CA, Yu PC, Martz TR (2011) High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6(12):e28983CrossRefGoogle Scholar
  31. Holst S (2012a) Effects of climate warming on strobilation and ephyra production of North Sea scyphozoan jellyfish. Hydrobiologia 690:127–140CrossRefGoogle Scholar
  32. Holst S (2012b) Morphology and development of benthic and pelagic life stages of North Sea jellyfish (Scyphozoa, Cnidaria) with special emphasis on the identification of ephyra stages. Mar Biol 159:2707–2722CrossRefGoogle Scholar
  33. Holst S, Jarms G (2007) Substrate choice and settlement preferences of planula larvae of five scyphozoa (Cnidaria) from German Bight, North Sea. Mar Biol 151:863–871CrossRefGoogle Scholar
  34. Holst S, Jarms G (2010) Effects of low salinity on settlement and strobilation of scyphozoa (Cnidaria): is the lion’s mane Cyanea capillata (L.) able to reproduce in the brackish Baltic Sea? Hydrobiologia 645:53–68CrossRefGoogle Scholar
  35. Holst S, Sotje I, Tiemann H, Jarms G (2007) Life cycle of the rhizostome jellyfish Rhizostoma octopus (L.) (Scyphozoa, Rhizostomeae), with studies on cnidocysts and statoliths. Mar Biol 151:1695–1710CrossRefGoogle Scholar
  36. Hood JM, Vanni MJ, Flecker AS (2005) Nutrient recycling by two phosphorus-rich grazing catfish: the potential for phosphorus-limitation of fish growth. Oecologia 146:247–257CrossRefGoogle Scholar
  37. Hoover RA, Armour R, Dow I, Purcell JE (2012) Nudibranch predation and dietary preference for the polyps of Aurelia labiata (Cnidaria: Scyphozoa). Hydrobiologia 690:199–213CrossRefGoogle Scholar
  38. Irigoien X, Head RN, Harris RP, Cummings D, Harbour D, Meyer-Harms B (2000) Feeding selectivity and egg production of Calanus helgolandicus in the English Channel. Limnol Oceanogr 45:44–54CrossRefGoogle Scholar
  39. Ito S, Rose A, Miller AJ, Drinkwater K, Brander K, Overland JE, Sundby S, Curchitser E, Hurrell JW, Yamanaka Y (2010) Ocean ecosystem responses to future global change scenarios: a way forward. In: Barange M, Field JG, Harris RP, Hofmann EE, Perry RI, Werner F (eds) Marine ecosystems and global change. Oxford University Press, New York, pp 287–322CrossRefGoogle Scholar
  40. Klein SG, Pitt KA, Rathjen KA, Seymour JE (2014) Irukandji jellyfish polyps exhibit tolerance to interacting climate change stressors. Glob Change Biol 20:28–37CrossRefGoogle Scholar
  41. Kogovsek T, Tinta T, Klun K, Malej A (2014) Jellyfish biochemical composition: importance of standardised sample processing. Mar Ecol Prog Ser 510:275–288CrossRefGoogle Scholar
  42. Lucas CH (2001) Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia 451:229–246CrossRefGoogle Scholar
  43. Lucas CH, Graham WM, Widmer C (2012) Jellyfish life histories: role of polyps in forming and maintaining scyphomedusa populations. In: Lesser M (ed) Advances in marine biology. Elsevier Academic Press Inc, San Diego, pp 133–196Google Scholar
  44. Lynam CP, Gibbons MJ, Axelsen BE, Sparks CAJ, Coetzee J, Heywood BG, Brierley AS (2006) Jellyfish overtake fish in a heavily fished ecosystem. Curr Biol 16:R492–R493CrossRefGoogle Scholar
  45. Mackas DL, Batten S, Trudel M (2007) Effects on zooplankton of a warmer ocean: recent evidence from the Northeast Pacific. Prog Ocean 75:223–252CrossRefGoogle Scholar
  46. Malzahn AM, Boersma M (2009) Trophic flexibility in larvae of two fish species (lesser sandeel, Ammodytes marinus and dab, Limanda limanda). Sci Mar 73:131–139Google Scholar
  47. Malzahn AM, Boersma M (2012) Effects of poor food quality on copepod growth are dose dependent and non-reversible. Oikos 121:1408–1416CrossRefGoogle Scholar
  48. Malzahn AM, Aberle N, Clemmesen C, Boersma M (2007) Nutrient limitation of primary producers affects planktivorous fish condition. Limnol Oceanogr 52:2062–2071CrossRefGoogle Scholar
  49. Malzahn AM, Hantzsche F, Schoo KL, Boersma M, Aberle N (2010) Differential effects of nutrient-limited primary production on primary, secondary or tertiary consumers. Oecologia 162:35–48CrossRefGoogle Scholar
  50. Mehrbach C, Culberso C, Hawley JE, Pytkowic R (1973) Measurement of apparent dissociation-constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907CrossRefGoogle Scholar
  51. Meunier CL, Boersma M, Wiltshire KH, Malzahn AM (2015) Zooplankton eat what they need: copepod selective feeding and potential consequences for marine systems. Oikos. doi: 10.1111/oik.02072
  52. Mills CE (2001) Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451:55–68CrossRefGoogle Scholar
  53. Murray CS, Malvezzi A, Gobler CJ, Baumann H (2014) Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish. Mar Ecol Prog Ser 504:1–11CrossRefGoogle Scholar
  54. Nakano S (1994) Carbon:nitrogen:phosphorus ratios and nutrient regeneration of a heterotrophic flagellate fed on bacteria with different elemental ratios. Arch Hydrobiol 129:257–271Google Scholar
  55. Olariaga A, Guallart EF, Fuentes V, Lopez-Sanz A, Canepa A, Movilla J, Bosch M, Calvo E, Pelejero C (2014) Polyp flats, a new system for experimenting with jellyfish polyps, with insights into the effects of ocean acidification. Limnol Oceanogr Meth 12:212–222Google Scholar
  56. Pitt KA, Welsh DT, Condon RH (2009) Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia 616:133–149CrossRefGoogle Scholar
  57. Pitt KA, Duarte CM, Lucas CH, Sutherland KR, Condon RH, Mianzan H, Purcell JE, Robinson KL, Uye SI (2013) Jellyfish body plans provide allometric advantages beyond low carbon content. PLoS ONE 8(8):e72683CrossRefGoogle Scholar
  58. Purcell JE (2007) Environmental effects on asexual reproduction rates of the scyphozoan Aurelia labiata. Mar Ecol Prog Ser 348:183–196CrossRefGoogle Scholar
  59. Purcell JE (2012) Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. In: Carlson CA, Giovannoni SJ (eds) Ann Rev Mar Sci, pp 209–235Google Scholar
  60. Purcell JE, White JR, Nemazie DA, Wright DA (1999) Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha. Mar Ecol Prog Ser 180:187–196CrossRefGoogle Scholar
  61. Purcell JE, Uye S, Lo WT (2007) Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar Ecol Prog Ser 350:153–174CrossRefGoogle Scholar
  62. Purcell JE, Atienza D, Fuentes V, Olariaga A, Tilves U, Colahan C, Gili JM (2012) Temperature effects on asexual reproduction rates of scyphozoan species from the northwest Mediterranean Sea. Hydrobiologia 690:169–180CrossRefGoogle Scholar
  63. Purcell JE, Breitburg DL, Decker MB, Graham WM, Youngbluth MJ, Raskoff KA (2013) Pelagic cnidarians and ctenophores in low dissolved oxygen environments: a review. In: Rabalais NN, Turner RE (eds) Coastal hypoxia: consequences for living resources and ecosystems. American Geophysical Union, Washington, D.CGoogle Scholar
  64. Richardson AJ, Gibbons MJ (2008) Are jellyfish increasing in response to ocean acidification? Limnol Oceanogr 53:2040–2045CrossRefGoogle Scholar
  65. Robbins L, Hansen M, Kleypas J, Meylan S (2010) CO2calc—a user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone). US Geological Survey Open-File Report 1280Google Scholar
  66. Rossoll D, Bermudez R, Hauss H, Schulz KG, Riebesell U, Sommer U, Winder M (2012) Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS ONE 7(4):e34737CrossRefGoogle Scholar
  67. Russel FS (1970) The medusae of the British Isles Vol. II—Pelagic scyphozoa, with a supplement to vol I. Cambridge University Press, CambridgeGoogle Scholar
  68. Ryther JH (1954) Inhibitory effects of phytoplankton upon the feeding of Daphnia magna with reference to growth, reproduction, and survival. Ecology 35:522–532CrossRefGoogle Scholar
  69. Sabates A, Pages F, Atienza D, Fuentes V, Purcell JE, Gili JM (2010) Planktonic cnidarian distribution and feeding of Pelagia noctiluca in the NW Mediterranean Sea. Hydrobiologia 645:153–165CrossRefGoogle Scholar
  70. Schoo KL, Aberle N, Malzahn AM, Boersma M (2010) Does the nutrient stoichiometry of primary producers affect the secondary consumer Pleurobrachia pileus? Aquat Ecol 44:233–242CrossRefGoogle Scholar
  71. Schoo KL, Aberle N, Malzahn AM, Boersma M (2012) Food quality affects secondary consumers even at low quantities: an experimental test with larval european lobster. PLoS ONE 7(3):e33550CrossRefGoogle Scholar
  72. Schoo KL, Malzahn AM, Krause E, Boersma M (2013) Increased carbon dioxide availability alters phytoplankton stoichiometry and affects carbon cycling and growth of a marine planktonic herbivore. Mar Biol 160:2145–2155CrossRefGoogle Scholar
  73. Sterner RW, Robinson JL (1994) Thresholds for growth in Daphnia magna with high and low phosphorus diets. Limnol Oceanogr 39:1228–1232CrossRefGoogle Scholar
  74. Sterner RW, Clasen J, Lampert W, Weisse T (1998) Carbon: phosphorus stoichiometry and food chain production. Ecol Lett 1:146–150CrossRefGoogle Scholar
  75. Toyokawa M (2011) First record of wild polyps of Chrysaora pacifica (Goette, 1886) (Scyphozoa, Cnidaria). Plankton Benthos Res 6:175–177CrossRefGoogle Scholar
  76. Urabe J, Watanabe Y (1992) Possibility of N or P limitation for planktonic cladocerans: an experimental test. Limnol Oceanogr 37:244–251CrossRefGoogle Scholar
  77. Urabe J, Togari J, Elser JJ (2003) Stoichiometric impacts of increased carbon dioxide on a planktonic herbivore. Glob Change Biol 9:818–825CrossRefGoogle Scholar
  78. van der Zee C, Chou L (2005) Seasonal cycling of phosphorus in the southern bight of the North Sea. Biogeosciences 2:27–42CrossRefGoogle Scholar
  79. Verschoor AM, Van Dijk MA, Huisman J, Van Donk E (2013) Elevated CO2 concentrations affect the elemental stoichiometry and species composition of an experimental phytoplankton community. Freshw Biol 58:597–611CrossRefGoogle Scholar
  80. Webster CN, Lucas CH (2012) The effects of food and temperature on settlement of Aurelia aurita planula larvae and subsequent somatic growth. J Exp Mar Biol Ecol 436:50–55CrossRefGoogle Scholar
  81. Winans AK, Purcell JE (2010) Effects of pH on asexual reproduction and statolith formation of the scyphozoan, Aurelia labiata. Hydrobiologia 645:39–52CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Thomas J. Lesniowski
    • 1
  • Maria Gambill
    • 2
  • Sabine Holst
    • 3
  • Myron A. Peck
    • 2
  • María Algueró-Muñiz
    • 1
  • Mathias Haunost
    • 1
    • 4
  • Arne M. Malzahn
    • 5
  • Maarten Boersma
    • 1
    • 6
  1. 1.Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und MeeresforschungBiologische Anstalt HelgolandHelgolandGermany
  2. 2.Institute of Hydrobiology and Fisheries ScienceUniversity of HamburgHamburgGermany
  3. 3.Senckenberg am Meer, German Center for Marine Biodiversity Researchc/o Biocenter Grindel and Zoological MuseumHamburgGermany
  4. 4.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  5. 5.Department of Marine Science and Fisheries, College of Agricultural and Marine SciencesSultan Qaboos UniversityAl-KhoudSultanate of Oman
  6. 6.University of BremenBremenGermany

Personalised recommendations