Marine Biology

, Volume 162, Issue 5, pp 1019–1031 | Cite as

Evidence of bottom-up limitations in nearshore marine systems based on otolith proxies of fish growth

  • Vanessa R. von Biela
  • Gordon H. Kruse
  • Franz J. Mueter
  • Bryan A. Black
  • David C. Douglas
  • Thomas E. Helser
  • Christian E. Zimmerman
Original Paper


Fish otolith growth increments were used as indices of annual production at nine nearshore sites within the Alaska Coastal Current (downwelling region) and California Current (upwelling region) systems (~36–60°N). Black rockfish (Sebastes melanops) and kelp greenling (Hexagrammos decagrammus) were identified as useful indicators in pelagic and benthic nearshore food webs, respectively. To examine the support for bottom-up limitations, common oceanographic indices of production [sea surface temperature (SST), upwelling, and chlorophyll-a concentration] during summer (April–September) were compared to spatial and temporal differences in fish growth using linear mixed models. The relationship between pelagic black rockfish growth and SST was positive in the cooler Alaska Coastal Current and negative in the warmer California Current. These contrasting growth responses to SST among current systems are consistent with the optimal stability window hypothesis in which pelagic production is maximized at intermediate levels of water column stability. Increased growth rates of black rockfish were associated with higher chlorophyll concentrations in the California Current only, but black rockfish growth was unrelated to the upwelling index in either current system. Benthic kelp greenling growth rates were positively associated with warmer temperatures and relaxation of downwelling (upwelling index near zero) in the Alaska Coastal Current, while none of the oceanographic indices were related to their growth in the California Current. Overall, our results are consistent with bottom-up forcing of nearshore marine ecosystems—light and nutrients constrain primary production in pelagic food webs, and temperature constrains benthic food webs.


  1. Agardy T, Alder J, Dayton P, Curran S, Kitchingman A, Wilson M, Catenazzi A, Birkeland C, Blaber S, Saifullah S, Branch G, Boersma D, Nixon S, Dugan P, Davidson N, Vorosmarty C (2005) Coastal Systems. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human well-being current state of trends, vol 1. Island Press, Washington, pp 513–549Google Scholar
  2. Astthorsson OS, Gislason A (1998) Environmental conditions, zooplankton, and capelin in the waters north of Iceland. ICES J Mar Sci 55:808–810CrossRefGoogle Scholar
  3. Barth JA, Menge BA, Lubchenco J, Chan F, Bane JM, Kirincich AR, McManus MA, Nielsen KJ, Pierce SD, Washburn L (2007) Delayed upwelling alters nearshore coastal ocean ecosystems in the northern California current. Proc Natl Acad Sci 104:3719–3724. doi:10.1073/pnas.0700462104 CrossRefGoogle Scholar
  4. Beckman D, Wilson C (1995) Seasonal timing of opaque zone formation in fish otoliths. In: Secor D, Dean J, Campana S (eds) Recent developments in fish otolith research. University of South Carolina Press, Columbia, pp 27–44Google Scholar
  5. Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755. doi:10.1038/nature05317 CrossRefGoogle Scholar
  6. Black BA, Boehlert GW, Yoklavich MM (2005) Using tree-ring crossdating techniques to validate annual growth increments in long-lived fishes. Can J Fish Aquat Sci 62:2277–2284. doi:10.1139/F05-142 CrossRefGoogle Scholar
  7. Black BA, Boehlert GW, Yoklavich MM (2008) Establishing climate-growth relationships for yelloweye rockfish (Sebastes ruberrimus) in the northeast Pacific using a dendrochronological approach. Fish Oceanogr 17:368–379. doi:10.1111/j.1365-2419.2008.00484.x CrossRefGoogle Scholar
  8. Black BA, Copenheaver CA, Frank DC, Stuckey MJ, Kormanyos RE (2009) Multi-proxy reconstructions of northeastern Pacific sea surface temperature data from trees and Pacific geoduck. Palaeogeogr Palaeoclimatol Palaeoecol 278:40–47. doi:10.1016/j.palaeo.2009.04.010 CrossRefGoogle Scholar
  9. Black BA, Schroeder ID, Sydeman WJ, Bograd SJ, Wells BK, Schwing FB (2011) Winter and summer upwelling modes and their biological importance in the California Current Ecosystem. Glob Change Biol 17:2536–2545. doi:10.1111/j.1365-2486.2011.02422.x CrossRefGoogle Scholar
  10. Blanchette CA, Broitman BR, Gaines SD (2006) Intertidal community structure and oceanographic patterns around Santa Cruz Island, CA, USA. Mar Biol 149:689–701. doi:10.1007/s00227-005-0239-3 CrossRefGoogle Scholar
  11. Blanchette CA, Helmuth B, Gaines SD (2007) Spatial patterns of growth in the mussel, Mytilus californianus, across a major oceanographic and biogeographic boundary at Point Conception, California, USA. J Exp Mar Bio Ecol 340:126–148. doi:10.1016/j.jembe.2006.09.022 CrossRefGoogle Scholar
  12. Boehlert GW, Yoklavich MM (1983) Effects of temperature, ration, and fish size on growth of juvenile black rockfish, Sebastes melanops. Environ Biol Fishes 8:17–28. doi:10.1007/BF00004942 CrossRefGoogle Scholar
  13. Boyce DG, Lewis MR, Worm B (2010) Global phytoplankton decline over the past century. Nature 466:591–596. doi:10.1038/nature09268 CrossRefGoogle Scholar
  14. Brander K (2010) Impacts of climate change on fisheries. J Mar Syst 79:389–402. doi:10.1016/j.jmarsys.2008.12.015 CrossRefGoogle Scholar
  15. Brickley PJ, Thomas AC (2004) Satellite-measured seasonal and inter-annual chlorophyll variability in the northeast Pacific and coastal Gulf of Alaska. Deep Sea Res Part 2 Top Stud Oceanogr 51:229–245. doi:10.1016/j.dsr2.2003.06.003 CrossRefGoogle Scholar
  16. Broitman BR, Kinlan BP (2006) Spatial scales of benthic and pelagic producer biomass in a coastal upwelling ecosystem. Mar Ecol Prog Ser 327:15–25. doi:10.3354/meps327015 CrossRefGoogle Scholar
  17. Burnham KP, Anderson DR (2001) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  18. Cavanaugh K, Siegel D, Reed D, Dennison P (2011) Environmental controls of giant-kelp biomass in the Santa Barbara Channel, California. Mar Ecol Prog Ser 429:1–17. doi:10.3354/meps09141 CrossRefGoogle Scholar
  19. Chassot E, Mélin F, Le Pape O, Gascuel D (2007) Bottom-up control regulates fisheries production at the scale of eco-regions in European seas. Mar Ecol Prog Ser 343:45–55. doi:10.3354/meps06919 CrossRefGoogle Scholar
  20. Chavez FP, Messié M (2009) A comparison of eastern boundary upwelling ecosystems. Prog Oceanogr 83:80–96. doi:10.1016/j.pocean.2009.07.032 CrossRefGoogle Scholar
  21. Childers A, Whitledge T, Stockwell D (2005) Seasonal and interannual variability in the distribution of nutrients and chlorophyll a across the Gulf of Alaska shelf: 1998–2000. Deep Sea Res Part 2 Top Stud Oceanogr 52:193–216. doi:10.1016/j.dsr2.2004.09.018 CrossRefGoogle Scholar
  22. Cloern JE, Jassby AD (2008) Complex seasonal patterns of primary producers at the land-sea interface. Ecol Lett 11:1294–1303. doi:10.1111/j.1461-0248.2008.01244.x CrossRefGoogle Scholar
  23. Demarcq H (2009) Trends in primary production, sea surface temperature and wind in upwelling systems (1998–2007). Prog Oceanogr 83:376–385. doi:10.1016/j.pocean.2009.07.022 CrossRefGoogle Scholar
  24. Duggins D, Simenstad C, Estes J (1989) Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science 245:170–173. doi:10.1126/science.245.4914.170 CrossRefGoogle Scholar
  25. Echave K, Eagleton M, Farley E, Orsi J (2012) A refined description of essential fish habitat for Pacific salmon within the U.S. Exclusive Economic Zone in Alaska. U.S. Dep Commer. NOAA Tech. Memo. NMFS-AFSC-234Google Scholar
  26. Etherington LL, Hooge PN, Hooge ER, Hill DF (2007) Oceanography of Glacier Bay, Alaska: implications for biological patterns in a glacial fjord estuary. Estuar Coast 30:927–944CrossRefGoogle Scholar
  27. Foley MM (2009) Investigating the influence of allochthonous subsidies on nearshore giant kelp forests in Big Sur, California. Dissertation, University of California, Santa CruzGoogle Scholar
  28. Freiwald J (2009) Causes and consequences of the movement of temperate reef fishes. Dissertation, University of California, Santa CruzGoogle Scholar
  29. Gargett AE (1997) The optimal stability ‘window’: a mechanism underlying decadal fluctuations in North Pacific salmon stocks? Fish Oceanogr 6:109–117. doi:10.1046/j.1365-2419.1997.00033.x CrossRefGoogle Scholar
  30. Green K, Starr R (2011) Movements of small adult black rockfish: implications for the design of MPAs. Mar Ecol Prog Ser 436:219–230. doi:10.3354/meps09263 CrossRefGoogle Scholar
  31. Harley CD, Randall Hughes A, Hultgren KM, Miner BG, Sorte CJ, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241. doi:10.1111/j.1461-0248.2005.00871.x CrossRefGoogle Scholar
  32. Henson SA (2007) Water column stability and spring bloom dynamics in the Gulf of Alaska. J Mar Res 65:715–736. doi:10.1357/002224007784219002 CrossRefGoogle Scholar
  33. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528. doi:10.1126/science.1189930 CrossRefGoogle Scholar
  34. Huyer A (1983) Coastal upwelling in the California Current system. Prog Oceanogr 12:259–284. doi:10.1016/0079-6611(83)90010-1 CrossRefGoogle Scholar
  35. Johnson S, Neff AD, Thedinga JF, Lindeberg MR, Maselko JM (2012) Atlas of nearshore fishes of Alaska: a synthesis of marine surveys from 1998 to 2011. U.S. Dep of Comm, NOAA Tech Memo NMFS-AFSC-239Google Scholar
  36. Ladd C, Stabeno P, Cokelet E (2005) A note on cross-shelf exchange in the northern Gulf of Alaska. Deep Sea Res Part 2 Top Stud Oceanogr 52:667–679. doi:10.1016/j.dsr2.2004.12.022 CrossRefGoogle Scholar
  37. Laurel BJ, Stoner AW, Ryer CH, Hurst TP, Abookire AA (2007) Comparative habitat associations in juvenile Pacific cod and other gadids using seines, baited cameras and laboratory techniques. J Exp Mar Bio Ecol 351:42–55. doi:10.1016/j.jembe.2007.06.005 CrossRefGoogle Scholar
  38. Love MS (2011) Certainly more than you want to know about the fishes of the Pacific Coast. Really Big Press, Santa BarbaraGoogle Scholar
  39. Love MS, Yoklavich MM, Thorsteinson LK (2002) The rockfishes of the northeast Pacific. University of California Press, Berkeley and Los AngelesGoogle Scholar
  40. MacFarlane RB (2010) Energy dynamics and growth of Chinook salmon (Oncorhynchus tshawytscha) from the Central Valley of California during the estuarine phase and first ocean year. Can J Fish Aquat Sci 67:1549–1565. doi:10.1139/F10-080 CrossRefGoogle Scholar
  41. McPhee-Shaw EE, Nielsen KJ, Largier JL, Menge BA (2011) Nearshore chlorophyll-a events and wave-driven transport. Geophys Res Lett. doi:10.1029/2010GL045810 Google Scholar
  42. Menge BA (2000) Top-down and bottom-up community regulation in marine rocky intertidal habitats. J Exp Mar Bio Ecol 250:257–289. doi:10.1016/S0022-0981(00)00200-8 CrossRefGoogle Scholar
  43. Menge BA, Menge DNL (2013) Dynamics of coastal meta-ecosystems: the intermittent upwelling hypothesis and a test in rocky intertidal regions. Ecol Monogr 83:283–310. doi:10.1890/12-1706.1 CrossRefGoogle Scholar
  44. Menge BA, Daley B, Wheeler PA, Dahlhoff E, Sanford E, Strub PT (1997) Benthic–pelagic links and rocky intertidal communities: bottom-up effects on top-down control? Proc Natl Acad Sci 94:14530–14535CrossRefGoogle Scholar
  45. Miller RJ, Reed DC, Brzezinski MA (2011) Partitioning of primary production among giant kelp (Macrocystis pyrifera), understory macroalgae, and phytoplankton on a temperate reef. Limnol Oceanogr 56:119–132. doi:10.4319/lo.2011.56.1.0119 CrossRefGoogle Scholar
  46. Morrongiello JR, Crook DA, King AJ, Ramsey DSL, Brown P (2011) Impacts of drought and predicted effects of climate change on fish growth in temperate Australian lakes. Glob Change Biol 17:745–755. doi:10.1111/j.1365-2486.2010.02259.x CrossRefGoogle Scholar
  47. Morrongiello JR, Thresher RE, Smith DC (2012) Aquatic biochronologies and climate change. Nat Clim Change 2:849–857. doi:10.1038/nclimate1616 CrossRefGoogle Scholar
  48. Moulton LL (1977) An ecological analysis of fishes inhabiting the rocky nearshore regions of northern Puget Sound, Washington. Dissertation, University of WashingtonGoogle Scholar
  49. Mueter FJ, Peterman RM, Pyper BJ (2002) Opposite effects of ocean temperature on survival rates of 120 stocks of Pacific salmon (Oncorhynchus spp.) in northern and southern areas. Can J Fish Aquat Sci 59:456–463. doi:10.1139/F02-020 CrossRefGoogle Scholar
  50. Mueter FJ, Broms C, Drinkwater KF, Friedland KD, Hare JA, Hunt GL Jr, Melle W, Taylor M (2009) Ecosystem responses to recent oceanographic variability in high-latitude Northern Hemisphere ecosystems. Prog Oceanogr 81:93–110. doi:10.1016/j.pocean.2009.04.018 CrossRefGoogle Scholar
  51. Munk KM (2012) Somatic-otolith size correlations for 18 marine fish species and their importance to age determination. Alaska Dep Fish Game Region Info Rep 5J12-13Google Scholar
  52. Parker SJ, Rankin PS, Olson JM, Hannah RW (2007) Movement patterns of black rockfish (Sebastes melanops) in Oregon coastal waters. In: Heifetz J, DiCosimo J, Gharrett AJ, Love MS, O’Connell VM, Stanley RD (eds) Biology, Assessment, and Management of North Pacific Rockfishes. Alaska Sea Grant College Program, University of Alaska, Fairbanks, pp 39–47CrossRefGoogle Scholar
  53. Phillips NE (2005) Growth of filter-feeding benthic invertebrates from a region with variable upwelling intensity. Mar Ecol Prog Ser 295:79–89. doi:10.3354/meps295079 CrossRefGoogle Scholar
  54. Phillips NE (2007) A spatial gradient in the potential reproductive output of the sea mussel Mytilus californianus. Mar Biol 151:1543–1550. doi:10.1007/s00227-006-0592-x CrossRefGoogle Scholar
  55. Piner KR, Haltuch MA, Wallace JR (2005) Preliminary use of oxygen stable isotopes and the 1983 El Niño to assess the accuracy of aging black rockfish (Sebastes melanops). Fish Bull 558:553–558Google Scholar
  56. Pinheiro J, Bates DM (2000) Mixed-effects models in S and S-Plus. Statistics and computing. Springer, New YorkCrossRefGoogle Scholar
  57. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation of Statistical Computing, ViennaGoogle Scholar
  58. Robards MD, Rose GA, Piatt JF (2002) Growth and abundance of Pacific sand lance, Ammodytes hexapterus, under differing oceanographic regimes. Environ Biol Fishes 64:429–441CrossRefGoogle Scholar
  59. Royer TC (2005) Hydrographic responses at a coastal site in the northern Gulf of Alaska to seasonal and interannual forcing. Deep Sea Res Part 2 Top Stud Oceanogr 52:267–288. doi:10.1016/j.dsr2.2004.09.022 CrossRefGoogle Scholar
  60. Schoch GC, Chenelot H (2004) The role of estuarine hydrodynamics in the distribution of kelp forests in Kachemak Bay, Alaska. J Coast Res 45:179–194CrossRefGoogle Scholar
  61. Stabeno P, Bond N, Hermann A, Kachel N, Mordy C, Overland JE (2004) Meteorology and oceanography of the Northern Gulf of Alaska. Cont Shelf Res 24:859–897. doi:10.1016/j.csr.2004.02.007 CrossRefGoogle Scholar
  62. Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459. doi:10.1017/S0376892902000322 CrossRefGoogle Scholar
  63. Strom S, Macri E, Fredrickson K (2010) Light limitation of summer primary production in the coastal Gulf of Alaska: physiological and environmental causes. Mar Ecol Prog Ser 402:45–57. doi:10.3354/meps08456 CrossRefGoogle Scholar
  64. Sverdrup HU, Johnson MW, Fleming RH (1942) The oceans, their physics, chemistry and general biology. Prentice-Hall, Englewood CliffsGoogle Scholar
  65. Sydeman WJ, Allen G (1999) Pinniped population dynamics in central California: correlations with sea surface temperature and upwelling indices. Mar Mamm Sci 15:446–461CrossRefGoogle Scholar
  66. Takahashi M, Checkley DM, Litz MNC, Brodeur RD, Peterson WT (2012) Responses in growth rate of larval northern anchovy (Engraulis mordax) to anomalous upwelling in the northern California Current. Fish Oceanogr 21:393–404. doi:10.1111/j.1365-2419.2012.00633.x CrossRefGoogle Scholar
  67. Tallis H (2009) Kelp and rivers subsidize rocky intertidal communities in the Pacific Northwest (USA). Mar Ecol Prog Ser 389:85–96. doi:10.3354/meps08138 CrossRefGoogle Scholar
  68. Thomas AC, Strub PT, Weatherbee RA, James C (2012) Satellite views of Pacific chlorophyll variability: comparisons to physical variability, local versus nonlocal influences and links to climate indices. Deep Sea Res Part 2 Top Stud Oceanogr 77–80:99–116. doi:10.1016/j.dsr2.2012.04.008 CrossRefGoogle Scholar
  69. von Biela VR, Newsome SD, Zimmerman CE (submitted) Widespread kelp-derived carbon in pelagic and benthic nearshore fishes. Marine Ecology Progress SeriesGoogle Scholar
  70. Ware DM, Thomson RE (2005) Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific. Science 308:1280–1284. doi:10.1126/science.1109049 CrossRefGoogle Scholar
  71. Weisberg S, Spangler G, Richmond LS (2010) Mixed effects models for fish growth. Can J Fish Aquat Sci 67:269–277. doi:10.1139/F09-181 CrossRefGoogle Scholar
  72. Wells BK, Grimes CB, Sneva JG, McPherson S, Waldvogel JB (2008) Relationships between oceanic conditions and growth of Chinook salmon (Oncorhynchus tshawytscha) from California, Washington, and Alaska, USA. Fish Oceanogr 17:101–125. doi:10.1111/j.1365-2419.2008.00467.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2015

Authors and Affiliations

  • Vanessa R. von Biela
    • 1
    • 2
  • Gordon H. Kruse
    • 2
  • Franz J. Mueter
    • 2
  • Bryan A. Black
    • 3
  • David C. Douglas
    • 1
  • Thomas E. Helser
    • 4
  • Christian E. Zimmerman
    • 1
  1. 1.Alaska Science CenterU.S. Geological SurveyAnchorageUSA
  2. 2.School of Fisheries and Ocean SciencesUniversity of Alaska FairbanksJuneauUSA
  3. 3.Marine Science InstituteUniversity of TexasPort AransasUSA
  4. 4.Alaska Fisheries Science CenterNational Oceanic and Atmospheric AdministrationSeattleUSA

Personalised recommendations