Advertisement

Marine Biology

, Volume 162, Issue 4, pp 889–899 | Cite as

White but not bleached: photophysiological evidence from white Montastraea cavernosa reveals potential overestimation of coral bleaching

  • Igor C. S. Cruz
  • Miguel C. Leal
  • Carlos R. Mendes
  • Ruy K. P. Kikuchi
  • Rui Rosa
  • Amadeu M. V. M. Soares
  • João Serôdio
  • Ricardo Calado
  • Rui J. M. Rocha
Original Paper

Abstract

Climate change and other types of environmental stress are known to increase corals’ vulnerability to bleaching, a process whereby colonies lose their colour either due to the loss of photosynthetic symbionts or their pigments. Although bleaching leaves the coral skeleton visible under its transparent tissue, not all white coral colonies display this feature. This raises the question as to whether all ‘white’-shaded colonies are indeed bleached. Within this context, Montastraea cavernosa colonies of different colour types (dark brown, light brown, bleached and white) were sampled for photobiological evaluation. Here, we show that, while the conventional spectral reflectance techniques failed to discriminate white from bleached colonies, chlorophyll fluorescence, photosynthetic pigment profile and Symbiodinium density enabled a clear distinction between these shades. Subsequently, video transects from reef monitoring surveys at Todos os Santos Bay (Brazil) revealed that the proportion of bleached and white colonies is similar, thus suggesting that current coral reef surveys may be overestimating the bleaching of M. cavernosa by nearly twofold.

Keywords

Normalize Difference Vegetation Index Photosynthetic Pigment Coral Bleaching White Coloni Video Transect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

ICSC was supported by a PhD scholarship (Conselho Nacional de Pesquisa, No 556755/2010-3), as well as MCL (SFRH/BD/63783/2009, Fundação para a Ciência e Tecnologia (FCT), QREN-POPH–Type 4.1–Advanced Training, subsidized by the European Social Fund and national funds MCTES). RKPK benefits from CNPq fellowship (PQ 1D), CRM was funded by a postdoc grant from CAPES (Brazil), and RJMR was supported by a postdoc scholarship (BPD/UI88/6077/2014), integrated in the project ‘CENTRO–07–ST24–FEDER–002033: Sustainable Use of Marine Resources–MARES’. This work was supported by European Funds through project SymbioCoRe (FP7–PEOPLE–2011–IRSES, 295191) and COMPETE, and national funds through FCT within project Pest-C/MAR/LA0017/2013. We also thank two anonymous reviewers for their comments to improve the manuscript and to Maria Silva from the University of St. Andrews (UK) for guidance on statistical analysis.

Supplementary material

Supplementary material 1 (MPG 21670 kb)

Supplementary material 2 (MPG 26300 kb)

References

  1. Adjeroud M, Michonneau F, Edmunds PJ, Chancerelle Y, Lison de Loma T, Penin L, Thibaut L, Vidal-Dupiol J, Salvat B, Galzin R (2009) Recurrent disturbances, recovery trajectories, and resilience of coral reef assemblages on a South Central Pacific reef. Coral Reefs 28:775–780CrossRefGoogle Scholar
  2. Alemu IJB, Clement Y (2014) Mass coral bleaching in 2010 in the southern Caribbean. PLoS one 9:e83829CrossRefGoogle Scholar
  3. Anderson TW (2003) An introduction to multivariate statistical analysis. Wiley, New YorkGoogle Scholar
  4. Andréfouet S, Berkelmans R, Odriozola L, Done T, Oliver J, Muller-Karger F (2002) Choosing the appropriate spatial resolution for monitoring coral bleaching events using remote sensing. Coral Reefs 21:147–154CrossRefGoogle Scholar
  5. Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80:435–471CrossRefGoogle Scholar
  6. Borneman E (2003) Coral disease at the flower gardens and stetson banks: a report. Reefkeeping.comGoogle Scholar
  7. Brandt ME (2009) The effect of species and colony size on the bleaching response of reef-building corals in the Florida keys during the 2005 mass bleaching event. Coral Reefs 28:911–924CrossRefGoogle Scholar
  8. Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:S129–S138CrossRefGoogle Scholar
  9. Brown BE, Dunne RP, Warner ME, Ambarsari I, Fitt WK, Gibb SW, Cummings DG (2000) Damage and recovery of photosynthetm II during a manipulative field experiment on solar bleaching in the coral Goniastrea aspera. Mar Ecol Prog Ser 195:117–124CrossRefGoogle Scholar
  10. Burns JHR, Gregg TM, Takabayashi M (2013) Does coral disease affect Symbiodinium? Investigating the impacts of growth anomaly on symbiont photophysiology. PLoS one 8:e72466CrossRefGoogle Scholar
  11. Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, Timmermann A, Santoso A, McPhaden MJ, Wu L, England MH, Wang G, Guilyardi E, Jin F-F (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change 4:111–116CrossRefGoogle Scholar
  12. Carleton CB, Done TJ (1995) Quantitative video sampling of coral reef benthos: large-scale application. Coral Reefs 14:35–46CrossRefGoogle Scholar
  13. Cirano M, Lessa GC (2007) Oceanographic characteristics of Baía de Todos os Santos, Brazil. Rev Bras Geofís 25:363–387CrossRefGoogle Scholar
  14. Cooper TF, Gilmour JP, Fabricius KE (2009) Bioindicators of changes in water quality on coral reefs: review and recommendations for monitoring programmes. Coral Reefs 28:589–606CrossRefGoogle Scholar
  15. Costa CF, Sassi R, Amaral FD (2004) Population density and photosynthetic pigment content in symbiotic dinoflagellates in the brazilian scleractinian coral Montastrea cavernosa (Linnaeus, 1767). Braz J Oceanogr 52:93–99Google Scholar
  16. Costa CF, Sassi R, Gorlach-Lira K (2013) Diversity and seasonal fluctuations of microsymbionts associated with some scleractinian corals of the Picãozinho reefs of Paraíba State, Brazil. PanAm J Aquat Sci 8:240–252Google Scholar
  17. Cruz ICS, Kikuchi RKP, Leão ZMAN (2008) Use of the video transect method for characterizing the Itacolomis reefs, eastern Brazil. Braz J Oceanogr 56:271–280CrossRefGoogle Scholar
  18. Cruz ICS, Kikuchi RKP, Leão ZMAN (2009) Caracterização dos recifes de corais da área de preservação ambiental da Baía de Todos os Santos para fins de manejo, Bahia, Brasil. Rev Gest Costeira Integr 9:3–23CrossRefGoogle Scholar
  19. Dalton SJ, Carroll AG (2011) Monitoring coral health to determine coral bleaching response at high latitude eastern Australian reefs: an applied model for a changing climate. Diversity 4:592–610CrossRefGoogle Scholar
  20. De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci USA 109:17995–17999CrossRefGoogle Scholar
  21. Done TJ, DeVantier LM, Turak E, Fisk DA, Wakeford M, Van Woesik R (2010) Coral growth on three reegs: development of recovery benchmarks using a space for time approach. Coral Reefs 29:815–833CrossRefGoogle Scholar
  22. Dove S, Ortiz J, Enriquez S, Fine M, Fisher P, Iglesias-Prieto R, Thornhill D, Hoegh-Guldberg O (2006) Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short-term heat stress. Limnol Oceanogr 51:1149–1158CrossRefGoogle Scholar
  23. Dutra LXC, Kikuchi RKP, Leão ZMAN (2006) Todos os Santos Bay coral reefs, Eastern Brazil, revisited after 40 years. Proceedings of the 10th International Coral Reef Symposium: 1090–1095Google Scholar
  24. Ferreira BP, Maida M (2006) Monitoriamento dos recifes de coral do Brasil: Situação atual e perspectivas. Brasilia, BrasilGoogle Scholar
  25. Ferreira BP, Costa MBSF, Coxey MS, Gaspar ALB, Veleda D, Araújo M (2012) The effects of sea surface temperature anomalies on oceanic coral reef systems in the southwestern tropical Atlantic. Coral Reefs 32:441–454CrossRefGoogle Scholar
  26. Ferreira BP, Costa MBSF, Coxey MS, Gaspar ALB, Veleda D, Araujo M (2013) The effects of sea surface temperature anomalies on oceanic coral reef systems in the southwestern tropical Atlantic. Coral Reefs 32:441–454CrossRefGoogle Scholar
  27. Fisher L, Banks K, Gilliam D, Dodge RE, Stout D, Vargas-Angel B, Walker BK (2008) Real-time coral stress observations before, during, and after beach nourishment dredging offshore SE Florida. Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale, Florida: 34–37Google Scholar
  28. Fisher PL, Malme MK, Dove S (2012) The effect of temperature stress on coral–Symbiodinium associations containing distinct symbiont types. Coral Reefs 31:473–485CrossRefGoogle Scholar
  29. Fitt W, Warner M (1995) Bleaching patterns of four species of Caribbean reef corals. Biol Bull 189:298–307CrossRefGoogle Scholar
  30. Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr 45:677–685CrossRefGoogle Scholar
  31. Francini-Filho RB, Coni EOC, Meirelles PM, Amado-Filho GM, Thompson FL, Pereira-Filho GH, Bastos AC, Abrantes DP, Ferreira CM, Gibran FZ, Guth AZ, Sumida PYG, Oliveira NL, Kaufman L, Minte-Vera CV, Moura RL (2013) Dynamics of coral reef benthic assemblages of the Abrolhos Bank, eastern Brazil: inferences on natural and anthropogenic drivers. PLoS one 8:e54260CrossRefGoogle Scholar
  32. Glynn PW (1984) Widespread coral mortality and the 1982–83 El Niño warming event. Environ Conserv 11:133–146CrossRefGoogle Scholar
  33. Goreau TJ, Hayes RL (1994) Coral bleaching and ocean “hot spots”. Ambio 23:176–180Google Scholar
  34. Hedley JD, Roelfsema CM, Phinn SR, Mumby PJ (2012) Environmental and sensor limitations in optical remote sensing of coral reefs: implications for monitoring and sensor design. Remote Sensing 4:271–302CrossRefGoogle Scholar
  35. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866CrossRefGoogle Scholar
  36. Kabiri K, Pradhan B, Samimi-Namin K, Moradi M (2013) Detecting coral bleaching, using QuickBird multi-temporal data: a feasibility study at Kish Island, the Persian Gulf. Estuar Coast Shelf Sci 117:273–281CrossRefGoogle Scholar
  37. Kemp DW, Hernandez-Pech X, Iglesias-Prieto R, Fitt WK, Schmidt GW (2014) Community dynamics and physiology of Symbiodinium spp. before, during and after a coral bleaching event. Limnol Oceanogr 59:788–797CrossRefGoogle Scholar
  38. Kenkel CD, Aglyamova G, Alamaru A, Bhagooli R, Capper R, Cunning R, deVillers A, Haslun JA, Hedouin L, Keshavmurthy S, Kuehl KA, Mahmoud H, McGinty ES, Montoya-Maya PH, Palmer CV, Pantile R, Sanchez JA, Schils T, Silverstein RN, Squiers LB, Tang PC, Goulet TL, Matz MV (2011) Development of gene expression markers of acute heat-light stress in reef-building corals of the genus Porites. PLoS one 6:e26914CrossRefGoogle Scholar
  39. Kenkel CD, Sheridan C, Leal MC, Bhagooli R, Castillo KD, Kurata N, McGinty E, Goulet TL, Matz MV (2014) Diagnostic gene expression biomarkers of coral thermal stress. Mol Ecol Resour 14:667–678CrossRefGoogle Scholar
  40. Kikuchi RKP, Leão ZMAN, Oliveira MDM (2010) Conservation status and spatial patterns of AGRRA vitality indices in Southwestern Atlantic reefs. Rev Biol Trop 58:1–31Google Scholar
  41. Kramarsky-Winter E, Harel M, Siboni N, Ben Dov E, Brickner I, Loya Y, Kushmaro A (2006) Identification of a protist-coral association and its possible ecological role. Mar Ecol Prog Ser 317:67–73CrossRefGoogle Scholar
  42. Laborel JL (1970) Madreporaires et hydrocoralliaires recifaux des cotes bresiliennes, Systematique, ecologie, repartition verticale et geographie. Annales de L’Institut oceanographique, Paris, pp 171–229Google Scholar
  43. Ladrière O, Penin L, Lierde EV, Vidal-Dupiol J, Kayal M, Roberty S, Poulicek M, Adjeroud M (2013) Natural spatial variability of algal endosymbiont density in the coral Acropora globiceps: a small-scale approach along environmental gradients around Moorea (French Polynesia). J Mar Biol Assoc UK 94:65–74CrossRefGoogle Scholar
  44. Lang JC, Marks KW, Kramer PA, Kramer PA, Ginsburg RN (2010) AGRRA protocols version 5.4, Miami, FLGoogle Scholar
  45. Leal MC, Jesus B, Ezequiel J, Calado R, Rocha RJM, Cartaxana P, Serôdio J (2014a) Concurrent imaging of chlorophyll fluorescence, chlorophyll a content and green fluorescent proteins-like proteins of symbiotic cnidarians. Mar Ecol. doi: 10.1111/maec.12164 Google Scholar
  46. Leal MC, Ferrier-Pagès C, Calado R, Brandes JA, Frischer ME, Nejstgaard JC (2014b) Trophic ecology of the facultative symbiotic coral Oculina arbuscula. Mar Ecol Prog Ser 504:171–179CrossRefGoogle Scholar
  47. Leão ZMAN, Kikuchi RKP, Testa V (2003) Corals and coral reefs of Brazil. Lat Am Coral Reefs 13:9–52CrossRefGoogle Scholar
  48. Leão ZMAN, Kikuchi RKP, Oliveira MDM, Vascocellos V (2010) Status of Eastern Brazilian coral reefs in time of climate changes. PanAm J Aquat Sci 5:224–235Google Scholar
  49. Mallela J, Crabbe MJC (2009) Hurricanes and coral bleaching linked to changes in coral recruitment in Tobago. Mar Eviron Res 68:158–162CrossRefGoogle Scholar
  50. Marshall NJ, Kleine DA, Dean AJ (2012) CoralWatch: education, monitoring, and sustainability through citizen science. Front Ecol Environ 10:332–334CrossRefGoogle Scholar
  51. Matz MV, Marshall NJ, Vorobyev M (2006) Are corals colorful? Photochem Photobiol 82:345–350CrossRefGoogle Scholar
  52. Mendes CR, Cartaxana P, Brotas V (2007) Determination of phytoplankton and microphytobenthos pigments: comparing resolution and sensitivity of a C18 and C8 method. Limnol Oceanogr Methods 5:363–370CrossRefGoogle Scholar
  53. Miranda RJ, Cruz ICS, Leão ZMAN (2013) Coral bleaching in the Caramuanas reef (Todos os Santos Bay, Brazil) during the 2010 El Niño event. Lat Am J Aquat Res 41:351–360CrossRefGoogle Scholar
  54. Mumby PJ, Skirving W, Strong AE, Hardy JT, LeDrew EF, Hochberg EJ, Stumpf RP, David LT (2004) Remote sensing of coral reefs and their physical environment. Mar Pollut Bull 48:219–228CrossRefGoogle Scholar
  55. Myers MR, Hardy JT, Mazel CH, Dustan P (1999) Optical spectra and pigmentation of Caribbean reef corals and macroalgae. Coral Reefs 18:179–186CrossRefGoogle Scholar
  56. Nir O, Gruber DF, Einbinder S, Kark S, Tchernov D (2011) Changes in scleractinian coral Seriatopora hystrix morphology and its endocellular Symbiodinium characteristics along a bathymetric gradient from shallow to mesophotic reef. Coral Reefs 30:1089–1100CrossRefGoogle Scholar
  57. Page C, Coleman G, Ninio R, Osborne K (2001) Surverys of benthic reef communities using underwater video: long-term monitoring of the Great Barrier Reef. Australia, Townsville, QueenslandGoogle Scholar
  58. Philipp E, Fabricius K (2003) Photophysiological stress in scleractinian corals in response to short-term sedimentation. J Exp Mar Biol, EcolGoogle Scholar
  59. Piniak GA (2007) Effects of two sediment types on the fluorescence yield of two Hawaiian scleractinian corals. Mar Environ Res 64:456–468CrossRefGoogle Scholar
  60. Porter JW, Meier OW (1992) Quantification of loss and change in floridian reef coral populations. Integr Comp Biol 32:625–640CrossRefGoogle Scholar
  61. Putnam HM, Edmunds P (2011) The physiological response of reef corals to diel fluctuations in seawater temperature. J Exp Mar Biol Ecol 396:216–223CrossRefGoogle Scholar
  62. R Development Core Team (2013) R: a language and environment for statistical computing. In: R Foundation for Statistical Computing (ed). R Foundation for Statistical Computing, Vienna, Austria (http://www.R-project.org)
  63. Rocha RJM, Pimentel T, Serôdio J, Rosa R, Calado R (2013a) Comparative performance of light emitting plastma (LEP) and light emitting diode (LED) in ex situ aquaculture of scleractinian corals. Aquaculture 402–403:38–45CrossRefGoogle Scholar
  64. Rocha RJM, Serôdio J, Leal MC, Cartaxana P, Calado R (2013b) Effect of light intensity on post-fragmentation photobiological performance of the soft coral Sinularia flexibilis. Aquaculture 388–391:24–29CrossRefGoogle Scholar
  65. Roff G, Kvennefors E, Ulstrup K, Fine M, Hoegh-Guldberg O (2008) Coral disease physiology: the impact of Acroporid white syndrome on Symbiodinium. Coral Reefs 27:373–377CrossRefGoogle Scholar
  66. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362CrossRefGoogle Scholar
  67. Rouse J, Haas R, Schell J, Deering D (1973) Monitoring vegetation systems in the Great Plains with ERTS. In: ERTS-1 Symposium, 3rd Greenbelt, MD. NASA, Washington, DC, p 309–317Google Scholar
  68. Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62CrossRefGoogle Scholar
  69. Scopélitis J, Andrefouet S, Phinn S, Chabanet P, Naim O, Tourrand C, Done T (2009) Changes of coral communities over 35 years: integrating in situ and remote-sensing data on Saint-Leu Reef (la Réunion, Indian Ocean). Estuar Coast Shelf Sci 84:342–352CrossRefGoogle Scholar
  70. Sheridan C, Kramarsky-Winter E, Sweet M, Kushmaro A, Leal MC (2013) Diseases in coral aquaculture: causes, implications and preventions. Aquaculture 396–399:124–135CrossRefGoogle Scholar
  71. Siboni N, Rasoulouniriana D, Ben-Dov E, Kramarsky-Winter E, Sivan A, Loya Y, Hoegh-Guldberg O, Kushmaro A (2010) Stramenopile microorganisms associated with the massive coral Favia sp. J Eukaryot Microbiol 57:236–244Google Scholar
  72. Siebeck UE, Marshall NJ, Kluter A, Hoegh-Guldberg O (2006) Monitoring coral bleaching using a colour reference card. Coral Reefs 25:453–460CrossRefGoogle Scholar
  73. Suggett DJ, Kikuchi RKP, Oliveira MDM, Spanó S, Carvalho R, Smith DJ (2012) Photobiology of corals from Brazil’s near-shore marginal reefs of Abrolhos. Mar Biol 159:1461–1473CrossRefGoogle Scholar
  74. Ulstrup K, Hill R, van Oppen M, Larkum A, Ralph P (2008) Seasonal variation in the photo-physiology of homogeneous and heterogeneous Symbiodinium consortia in two scleractinian corals. Mar Ecol Prog Ser 361:139–150CrossRefGoogle Scholar
  75. Van Veghel MLJ (1993) Multiple species spawning on Curacao reefs. Bull Mar Sci 52:1017–1021Google Scholar
  76. Veal CJ, Carmi M, Fine M, Hoegh-Guldberg O (2010) Increasing the accuracy of surface area estimation using single wax dipping of coral fragments. Coral Reefs 29:893–897CrossRefGoogle Scholar
  77. Venn AA, Wilson MA, Trapido-Rosenthal HG, Keely BJ, Douglas AE (2006) The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium. Plant Cell Environ 29:2133–2142CrossRefGoogle Scholar
  78. Veron JEN (2000) Corals of the World. Australian Institute of Marine Science, Townsville, Qld, AustraliaGoogle Scholar
  79. Warner M, Fitt W, Schmidt G (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007CrossRefGoogle Scholar
  80. Weber M, de Beer D, Lott C, Polerecky L, Kohls K, Abed RMM, Ferdelman TG, Fabricius KE (2012) Mechanisms of damage to corals exposed to sedimentation. Proc Natl Acad Sci 109:E1558–E1567CrossRefGoogle Scholar
  81. Wijgerde T, Melis AV, Silva CIF, Leal MC, Vogels L, Mutter C, Osinga R (2014) Red light represses the photophysiology of the scleractinian coral Stylophora pistillata. PLoS one 9:e92781CrossRefGoogle Scholar
  82. Winters G, Holzman R, Blekhman A, Beer S, Loya Y (2009) Photographic assessment of coral chlorophyll contents: implications for ecophysiological studies and coral monitoring. J Exp Mar Biol Ecol 380:22–35CrossRefGoogle Scholar
  83. Yamano H (2004) Detection limits of coral reef bleaching by satellite remote sensing: simulation and data analysis. Remote Sens Environ 90:86–103CrossRefGoogle Scholar
  84. Yamano H (2013) Multispectral applications. In: Goodman JA, Purkis SJ, Phinn SR (eds) Coral reef remote sensing. Springer, Dordrecht, pp 51–78CrossRefGoogle Scholar
  85. Zapata M, Rodríguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29–45CrossRefGoogle Scholar
  86. Zar JH (2010) Biostatistical analysis. Prentice Hall, New JerseyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Igor C. S. Cruz
    • 1
  • Miguel C. Leal
    • 2
  • Carlos R. Mendes
    • 3
  • Ruy K. P. Kikuchi
    • 4
  • Rui Rosa
    • 5
  • Amadeu M. V. M. Soares
    • 2
  • João Serôdio
    • 2
  • Ricardo Calado
    • 2
  • Rui J. M. Rocha
    • 2
  1. 1.Programa de Pós-Graduação em Ecologia e EvoluçãoUniversidade do Estado do Rio de Janeiro-UERJRio de JaneiroBrazil
  2. 2.Departamento de Biologia & CESAMUniversidade de AveiroAveiroPortugal
  3. 3.Instituto de OceanografiaUniversidade Federal do Rio Grande (FURG)Rio GrandeBrazil
  4. 4.Departamento de OceanografiaUniversidade Federal da Bahia, Instituto de GeociênciasSalvadorBrazil
  5. 5.Laboratório Marítimo da Guia, Centro de OceanografiaFaculdade de Ciências da Universidade de LisboaCascaisPortugal

Personalised recommendations