Marine Biology

, Volume 162, Issue 5, pp 929–943 | Cite as

How do harpacticoid copepods colonize detrital seagrass leaves?

  • Thibaud Mascart
  • Laura Agusto
  • Gilles Lepoint
  • François Remy
  • Marleen De Troch
Original Paper


An experiment was carried out investigating the colonization ability and specific pattern of copepods towards a provisional benthic habitat. Since copepods are known to disperse passively and actively, the experiment aimed to investigate the pool of colonizers of macrophytodetritus and the species-specific active colonization pathways. The experiment was performed in a Mediterranean seagrass Posidonia oceanica meadow on defaunated macrophytodetritus accumulations (mainly dead seagrass leaves) for two time intervals (24 and 96 h). Active colonization by copepods, independently of their adjacent potential source pool habitat (bare sandy sediments, P. oceanica canopy, water column and macrophytodetritus) occurred within 24 h. Natural densities (as in the control treatments) were only reached by active colonization through the water column. Both neither diversities nor species composition of natural macrophytodetritus were ever reached by one single migratory pathway, therefore only a combination of interstitial migration and water column migration can explain the species occurrence under natural condition. Moreover, every potential adjacent source pool habitat contributed species to the newly colonized macrophytodetritus. However, the main colonizers were mostly species with good swimming capabilities. The diverse pool of species present in the newly colonized macrophytodetritus underlines the complex communities and dispersion capabilities of copepods. Hence, macrophytodetritus possesses the potential ability to be a colonizer source pool for every adjacent habitat and thus behaves as a copepod hub for the entire seagrass ecosystem.


Meiofauna Seagrass Meadow Lower Compartment Colonization Ability Adjacent Habitat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors kindly thank the Stareso field station staff for their assistance in the experimental setup and Renzo Biondo for his help throughout the design. The authors thank the three anonymous referees for their constructive remarks that contributed to the improvement of the manuscript. The first author acknowledges a F.R.I.A. Ph.D. Grant (Belgian National Fund for Research Training in industry and in agriculture). This study was conducted within the frame of FRS-FNRS research Project FRFC 2.4511.09 (University of Liège) with additional support provided by the Ghent University (BOF-GOA 01GZ0705 and 01GA1911W). G. Lepoint is a Research Associate of the FRS-FNRS. M. De Troch is a postdoctoral fellow financed by the Special Research Fund of the Ghent University (BOF-GOA 01GA1911 W). This is the MARE paper number 288.


  1. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, PlymouthGoogle Scholar
  2. Armonies W (1994) Drifting meio- and macrobenthic invertebrates on tidal flats in Königshafen: a review. Helgolander Meeresunters 48:299–320. doi: 10.1007/BF02367043 CrossRefGoogle Scholar
  3. Bell SS, Walters K, Hall MO (1987) Habitat utilization by harpacticoid copepods—a morphometric approach. Mar Ecol Prog Ser 35:59–64. doi: 10.3354/meps035059 CrossRefGoogle Scholar
  4. Bodin P, Leguellec C (1992) Meiobenthos of the bay of Saint-Brieuc (North Brittany, France). 2. Harpacticoid copepod diversity and species assemblages. Oceanol Acta 15:673–686Google Scholar
  5. Bongers T (1990) The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19. doi: 10.1007/bf00324627 CrossRefGoogle Scholar
  6. Bonsdorff E (1992) Drifting algae and zoobenthos—effects on settling and community structure. Neth J Sea Res 30:57–62. doi: 10.1016/0077-7579(92)90045-g CrossRefGoogle Scholar
  7. Bostrom C, Bonsdorff E (2000) Zoobenthic community establishment and habitat complexity—the importance of seagrass shoot-density, morphology and physical disturbance for faunal recruitment. Mar Ecol Prog Ser 205:123–138CrossRefGoogle Scholar
  8. Bostrom C, Tornroos A, Bonsdorff E (2010) Invertebrate dispersal and habitat heterogeneity: expression of biological traits in a seagrass landscape. J Exp Mar Biol Ecol 390:106–117. doi: 10.1016/j.jembe.2010.05.008 CrossRefGoogle Scholar
  9. Boxshall GA, Hasley SH (2004) An introduction to copepods diversity. The Ray Society, LondonGoogle Scholar
  10. Cadotte MW (2007) Competition-colonization trade-offs and disturbance effects at multiple scales. Ecology 88:823–829. doi: 10.1890/06-1117 CrossRefGoogle Scholar
  11. Callens M, Gheerardyn H, Ndaro SGM, De Troch M, Vanreusel A (2012) Harpacticoid copepod colonization of coral fragments in a tropical reef lagoon (Zanzibar, Tanzania). J Mar Biol Assoc U K 92:1535–1545. doi: 10.1017/s0025315411001597 CrossRefGoogle Scholar
  12. Chandler GT, Fleeger JW (1983) Meiofaunal colonization of azoic estuarine sediment in Louisiana: mechanisms of dispersal. J Exp Mar Biol Ecol 69:175–188. doi: 10.1016/0022-0981(83)90066-7 CrossRefGoogle Scholar
  13. Chertoprud ES, Azovsky AI, Sapozhnikov FV (2005) Colonization of azoic sediments of different grain-size composition by littoral Harpacticoida : Copepoda. Oceanology 45:698–706Google Scholar
  14. Clarke KR, Gorley RN (2006) PRIMER v6. In: PRIMER-E (ed) User Manual/Tutorial, PlymouthGoogle Scholar
  15. Commito JA, Tita G (2002) Differential dispersal rates in an intertidal meiofauna assemblage. J Exp Mar Biol Ecol 268:237–256. doi: 10.1016/S0022-0981(01)00386-0 CrossRefGoogle Scholar
  16. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310. doi: 10.1126/science.199.4335.1302 CrossRefGoogle Scholar
  17. Coull BC, Wells JBJ (1983) Refuges from fish predation—experiments with phytal meiofauna from the New-Zealand rocky intertidals. Ecology 64:1599–1609. doi: 10.2307/1937513 CrossRefGoogle Scholar
  18. Danovaro R, Fraschetti S (2002) Meiofaunal vertical zonation on hard-bottoms: comparison with soft-bottom meiofauna. Mar Ecol Prog Ser 230:159–169. doi: 10.3354/meps230159 CrossRefGoogle Scholar
  19. Dauby P (1980) Cycle annuel du zooplancton de surface de la baie de Calvi (Corse). Biomasse totale et plancton copépodien. Acta Oecol 3:403–407Google Scholar
  20. De Troch M, Gurdebeke S, Fiers F, Vincx M (2001) Zonation and structuring factors of meiofauna communities in a tropical seagrass bed (Gazi Bay, Kenya). J Sea Res 45:45–61. doi: 10.1016/S1385-1101(00)00055-1 CrossRefGoogle Scholar
  21. De Troch M, Vandepitte L, Raes M, Suarez-Morales E, Vincx M (2005) A field colonization experiment with meiofauna and seagrass mimics: effect of time, distance and leaf surface area. Mar Biol 148:73–86. doi: 10.1007/s00227-005-0062-x CrossRefGoogle Scholar
  22. Decho AW, Fleeger JW (1988) Microscale dispersion of meiobenthic copepods in response to food-resource patchiness. J Exp Mar Biol Ecol 118:229–243. doi: 10.1016/0022-0981(88)90075-5 CrossRefGoogle Scholar
  23. Dethier MN, Brown AS, Burgess S, Eisenlord ME, Galloway AWE, Kimber J, Lowe AT, O’Neil CM, Raymond WW, Sosik EA, Duggins DO (2014) Degrading detritus: changes in food quality of aging kelp tissue varies with species. J Exp Mar Biol Ecol 460:72–79. doi: 10.1016/j.jembe.2014.06.010 CrossRefGoogle Scholar
  24. Faust MA, Gulledge RA (1996) Associations of microalgae and meiofauna in floating detritus at a mangrove island, Twin Cays, Belize. J Exp Mar Biol Ecol 197:159–175CrossRefGoogle Scholar
  25. Fleeger JW, Chandler GT, Fitzhugh GR, Phillips FE (1984) Effects of tidal currents on meiofauna densities in vegetated salt marsh sediments. Mar Ecol Prog Ser 19:49–53. doi: 10.3354/meps019049 CrossRefGoogle Scholar
  26. Fleeger JW, Yund PO, Sun B (1995) Active and passive processes associated with initial settlement and post-settlement dispersal of suspended meiobenthic copepod. J Mar Res 53:609–645. doi: 10.1357/0022240953213070 CrossRefGoogle Scholar
  27. Frisch D, Green AJ (2007) Copepods come in first: rapid colonization of new temporary ponds. Fundam Appl Limnol 168:289–297. doi: 10.1127/1863-9135/2007/0168-0289 CrossRefGoogle Scholar
  28. Gallmetzer I, Pflugfelder B, Zekely J, Ott JA (2005) Macrofauna diversity in Posidonia oceanica detritus: distribution and diversity of mobile macrofauna in shallow sublittoral accumulations of Posidonia oceanica detritus. Mar Biol 147:517–523. doi: 10.1007/s00227-005-1594-9 CrossRefGoogle Scholar
  29. Gheerardyn H, de Troch M, Vincx M, Vanreusel A (2009) Harpacticoida (Crustacea: Copepoda) associated with cold-water coral substrates in the Porcupine Seabight (NE Atlantic): species composition, diversity and reflections on the origin of the fauna. Sci Mar 73:747–760. doi: 10.3989/scimar.2009.73n4747 CrossRefGoogle Scholar
  30. Giere O (2009) Meiobenthology—the microscopic motile fauna of aquatic sediments. Springer, BerlinGoogle Scholar
  31. Guidi-Guilvard LD, Thistle D, Khripounoff A, Gasparini S (2009) Dynamics of benthic copepods and other meiofauna in the benthic boundary layer of the deep NW Mediterranean Sea. Mar Ecol Prog Ser 396:181–195. doi: 10.3354/meps08408 CrossRefGoogle Scholar
  32. Hagerman GM, Rieger RM (1981) Dispersal of benthic meiofauna by wave and current action in bogue sound, North Carolina, USA. Mar Ecol 2:245–270. doi: 10.1111/j.1439-0485.1981.tb00099.x CrossRefGoogle Scholar
  33. Hamner WM, Carleton JH (1979) Copepod swarms: attributes and role in coral reef ecosystems. Limnol Oceanogr 24:1–14CrossRefGoogle Scholar
  34. Heip C, Willems K, Van hauwermeiren G (1983) Een systematisch-ecologische studie van Copepoda Harpacticoida levend op bruinwieren van het genus Cystoseira in de Baai van Calvi (Corsica). LUC, DiepenbeekGoogle Scholar
  35. Hicks GRF (1977) Observations on substrate preference of marine phytal harpacticoids (copepoda). Hydrobiologia 56:7–9CrossRefGoogle Scholar
  36. Hicks GRF (1980) Structure of phytal harpacticoid copepod assemblages and the influence of habitat complexity and turbidity. J Exp Mar Biol Ecol 44:157–192CrossRefGoogle Scholar
  37. Hicks GRF (1986) Distribution and behaviour of meiofaunal copepods inside and outside seagrass beds. Mar Ecol Prog Ser 31:159–170. doi: 10.3354/meps031159 CrossRefGoogle Scholar
  38. Hicks GRF, Coull BC (1983) The ecology of marine meiobenthic harpacticoid copepods. Oceanogr Mar Biol 21:67–175Google Scholar
  39. Higgins R, Thiel H (1988) Introduction to the study of meiofauna. Smithsonian Institution Press, LondonGoogle Scholar
  40. Hockin DC, Ollason JG (1981) The colonization of artificially isolated volumes of intertidal estuarine sand by harpacticoid copepods. J Exp Mar Biol Ecol 53:9–29. doi: 10.1016/0022-0981(81)90081-2 CrossRefGoogle Scholar
  41. Hulings NC, Gray JS (1971) A manual for the study of meiofauna. Smithson Contrib Zool 78:1–83Google Scholar
  42. Huys R, Boxshall GA (1991) Copepod evolution. London Ray Society, LondonGoogle Scholar
  43. Jacobi CM, Langevin R (1996) Habitat geometry of benthic substrata: effects on arrival and settlement of mobile epifauna. J Exp Mar Biol Ecol 206:39–54. doi: 10.1016/s0022-0981(96)02605-6 CrossRefGoogle Scholar
  44. Kiorboe T (2000) Colonization of marine snow aggregates by invertebrate zooplankton: abundance, scaling, and possible role. Limnol Oceanogr 45:479–484CrossRefGoogle Scholar
  45. Koski M, Kiorboe T, Takahashi K (2005) Benthic life in the pelagic: aggregate encounter and degradation rates by pelagic harpacticoid copepods. Limnol Oceanogr 50:1254–1263CrossRefGoogle Scholar
  46. Kotwicki L, De Troch M, Urban-Malinga B, Gheskiere T, Weslawski JM (2005) Horizontal and vertical distribution of meiofauna on sandy beaches of the North Sea (The Netherlands, Belgium, France). Helgol Mar Res 59:255–264. doi: 10.1007/s10152-005-0001-8 CrossRefGoogle Scholar
  47. Kurdziel JP, Bell SS (1992) Emergence and dispersal of phytal-dwelling meiobenthic copepods. J Exp Mar Biol Ecol 163:43–64. doi: 10.1016/0022-0981(92)90146-2 CrossRefGoogle Scholar
  48. Lang K (1948) Monographie der Harpacticiden. Hâkan Ohlssons boktryckeri, LundGoogle Scholar
  49. Lepoint G, Cox AS, Dauby P, Poulicek M, Gobert S (2006) Food sources of two detritivore amphipods associated with the seagrass Posidonia oceanica leaf litter. Mar Biol Res 2:355–365. doi: 10.1080/17451000600962797 CrossRefGoogle Scholar
  50. Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, OxfordGoogle Scholar
  51. Magurran AE, McGill BJ (2011) Biological diversity: frontiers in measurement and assessment. Oxford University Press, New YorkGoogle Scholar
  52. Mascart T, Lepoint G, De Troch M (2013) Meiofauna and harpacticoid copepods in different habitats of a Mediterranean seagrass meadow. J Mar Biol Assoc UK 93:1557–1566. doi: 10.1017/s0025315413000222 CrossRefGoogle Scholar
  53. Mascart T, Lepoint G, Deschoemaeker S, Binard M, Remy F, De Troch M (2015) Seasonal variability of meiofauna, especially harpacticoid copepods, in Posidonia oceanica macrophytodetritus accumulations. J Sea Res 95:149–160. doi: 10.1016/j.seares.2014.07.009 CrossRefGoogle Scholar
  54. Mateo MA, Romero J (1997) Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget. Mar Ecol Prog Ser 151:43–53. doi: 10.3354/meps151043 CrossRefGoogle Scholar
  55. McIntyre AD (1969) Ecology of marine meiobenthos. Biol Rev 44:245–288. doi: 10.1111/j.1469-185X.1969.tb00828.x CrossRefGoogle Scholar
  56. Noodt W (1971) Ecology of the Copepoda. Smithsonian Institution Press, WashingtonGoogle Scholar
  57. Norkko A, Bonsdorff E (1996) Rapid zoobenthic community responses to accumulations of drifting algae. Mar Ecol Prog Ser 131:143–157. doi: 10.3354/meps131143 CrossRefGoogle Scholar
  58. Ólafsson E, Ingólfsson A, Steinarsdóttir MB (2001) Harpacticoid copepod communities of floating seaweed: controlling factors and implications for dispersal. Hydrobiologia 453–454:189–200CrossRefGoogle Scholar
  59. Palmer MA (1984) Invertebrate drift: behavioral experiments with intertidal meiobenthos. Mar Behav Physiol 10:235–253CrossRefGoogle Scholar
  60. Palmer MA (1988) Dispersal of marine meiofauna a review and conceptual model explaining passive transport and active emergence with implications for recruitment. Mar Ecol Prog Ser 48:81–91. doi: 10.3354/meps048081 CrossRefGoogle Scholar
  61. Palmer MA, Gust G (1985) Dispersal of meiofauna in a turbulent tidal creek. J Mar Res 43:179–210CrossRefGoogle Scholar
  62. Quinn GGP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  63. Remane A (1952) Die Besiedlung des Sandbodens im Meere und die Bedeutung der Lebensformtypen für die Ökologie. Verhandlungen der Deutschen Zoologischen Gesellschaft 1951:327–359Google Scholar
  64. Romero J, Pergent G, Pergentmartini C, Mateo MA, Regnier C (1992) The detritic compartment in a Posidonia oceanica meadow—litter features, decomposition rates and mineral stocks. Mar Ecol 13:69–83CrossRefGoogle Scholar
  65. Sanmarti N, Menendez M (2007) Litter decomposition of Scirpus maritimus L. in a Mediterranean coastal marsh: importance of the meiofauna during the initial phases of detached leaves decomposition. Int Rev Hydrobiol 92:211–226. doi: 10.1002/iroh.200510955 CrossRefGoogle Scholar
  66. Scheef LP, Marcus NH (2010) Occurrence and significance of copepod resting egg accumulation in seagrass sediments. Mar Ecol Prog Ser 407:125–134. doi: 10.3354/meps08573 CrossRefGoogle Scholar
  67. Sedlacek L, Thistle D (2006) Emergence on the continental shelf: differences among species and between microhabitats. Mar Ecol Prog Ser 311:29–36. doi: 10.3354/meps311029 CrossRefGoogle Scholar
  68. Sun B, Fleeger JW (1994) Field experiments on the colonization of meiofauna into sediment depressions. Mar Ecol Prog Ser 110:167–175. doi: 10.3354/meps110167 CrossRefGoogle Scholar
  69. Teasdale M, Vopel K, Thistle D (2004) The timing of benthic copepod emergence. Limnol Oceanogr 49:884–889CrossRefGoogle Scholar
  70. Thielemans LKH, Heip C (1984) The response of a harpacticoid copepod community to sediment disturbance in a semi-enclosed lagoon. Hydrobiologia 118:127–133. doi: 10.1007/bf00031795 CrossRefGoogle Scholar
  71. Thistle D (1978) Harpacticoid dispersion patterns implications for deep-sea diversity maintenance. J Mar Res 36:377–397Google Scholar
  72. Thistle D, Sedlacek L (2004) Emergent and non-emergent species of harpacticoid copepods can be recognized morphologically. Mar Ecol Prog Ser 266:195–200. doi: 10.3354/meps266195 CrossRefGoogle Scholar
  73. Thistle D, Weatherly GL, Wonnacott A, Ertman SC (1995) Suspension by winter storms has an energetic cost for adult male benthic harpacticoid copepods at a shelf site. Mar Ecol Prog Ser 125:77–86. doi: 10.3354/meps125077 CrossRefGoogle Scholar
  74. Thomsen MS, Muth MF, McGlathery KJ (2011) Tube-forming polychaetes enhance invertebrate diversity and abundance in sandy sediments of Mozambique, Africa. Afr J Mar Sci 33:327–332. doi: 10.2989/1814232x.2011.600433 CrossRefGoogle Scholar
  75. Torres-Pratts H, Schizas NV (2007) Meiofaunal colonization of decaying leaves of the red mangrove Rhizophora mangle, in southwestern Puerto Rico. Caribb J Sci 43:127–137Google Scholar
  76. Vetter EW (1995) Detritus-based patches of high secondary production in the nearshore benthos. Mar Ecol Prog Ser 120:251–262. doi: 10.3354/meps120251 CrossRefGoogle Scholar
  77. Walters K (1991) Influences of abundance, behavior, species composition, and ontogenetic stage on active emergence of meiobenthic copepods in subtropical habitats. Mar Biol 108:207–215. doi: 10.1007/BF01344335 CrossRefGoogle Scholar
  78. Walters K, Bell SS (1986) Diel patterns of active vertical migration in seagrass meiofauna. Mar Ecol Prog Ser 34:95–103. doi: 10.3354/meps034095 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Thibaud Mascart
    • 1
    • 2
  • Laura Agusto
    • 1
  • Gilles Lepoint
    • 2
  • François Remy
    • 2
  • Marleen De Troch
    • 1
  1. 1.Marine BiologyGhent UniversityGhentBelgium
  2. 2.Laboratory of Oceanology, MARE CentreUniversity of LiègeLiègeBelgium

Personalised recommendations