Marine Biology

, Volume 162, Issue 1, pp 39–54 | Cite as

Introgressive hybridization between the Atlantic and Pacific herrings (Clupea harengus and C. pallasii) in the north of Europe

  • Hanna M. Laakkonen
  • Petr Strelkov
  • Dmitry L. Lajus
  • Risto Väinölä
Original Paper


We present evidence of mitochondrial and nuclear introgression from the Atlantic herring Clupea harengus into the Pacific herring C. pallasii in northern European seas, where the two species have come into secondary contact following the post-glacial trans-Arctic invasion of Pacific herring to the Atlantic realm. Although the breeding areas of the two species are thought to be separate, 7 % of the resident Pacific herring in samples from the White Sea were found to possess Atlantic herring mitochondria. The percentage was even higher (21 %) in the local Balsfjord stock of the Norwegian Sea, whereas it was nil in Pechora Sea samples. Similar or somewhat lower levels of genomic admixture were estimated from four diagnostic or nearly diagnostic nuclear allozyme loci. The absences of inter-locus and cytonuclear disequilibria, together with the patterns of mtDNA haplotype diversity, suggest recurrent backcrossing and hybridization over a long period in the post-glacial time frame. From a reassessment of published allozyme data, a hypothesis is presented that the patterns of intra-species geographical variation previously recorded in North European herrings may largely reflect varying levels of introgression. The study presents new information on the processes that affect the genetic structure of one of the most abundant fishes of the northern seas. It also adds to the knowledge on the occurrence of inter-species gene flow in marine fishes and on the consequences of trans-Arctic biotic invasions in general.



We thank Elza Ivshina, Andrey Semushin, Andrey Smirnov, Oddvar Skogli, Tatyana Paneva and Victor Berger, who kindly provided samples or helped with collections of herring, and Stewart Grant and the two anonymous referees for useful comments and criticism. The study was supported by the Academy of Finland (project grant 127471) and Saint Petersburg State University (project grant

Supplementary material

227_2014_2564_MOESM1_ESM.pdf (26 kb)
Supplementary material 1 (PDF 26 kb)


  1. Arnold ML, Fogarty ND (2009) Reticulate evolution and marine organisms: the final frontier? Int J Mol Sci 10:3836–3860CrossRefGoogle Scholar
  2. Asmussen MA, Basten CJ (1994) Sampling theory for cytonuclear disequilibria. Genetics 138:1351–1363Google Scholar
  3. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefGoogle Scholar
  4. Colbeck GJ, Turgeon J, Sirois P, Dodson JJ (2011) Historical introgression and the role of selective vs. neutral processes in structuring nuclear genetic variation (AFLP) in a circumpolar marine fish, the capelin (Mallotus villosus). Mol Ecol 20:1976–1987CrossRefGoogle Scholar
  5. Congiu L, Dupanloup I, Patarnello T, Fontana F, Rossi R et al (2001) Identification of interspecific hybrids by amplified fragment length polymorphism: the case of sturgeon. Mol Ecol 10:2355–2359CrossRefGoogle Scholar
  6. Dodson JJ, Tremblay S, Colombani F, Carscadden JE, Lecomte F (2007) Trans-Arctic dispersals and the evolution of a circumpolar marine fish species complex, the capelin (Mallotus villosus). Mol Ecol 16:5030–5043CrossRefGoogle Scholar
  7. Faria R, Weiss S, Alexandrino P (2012) Comparative phylogeography and demographic history of European shads (Alosa alosa and A. fallax) inferred from mitochondrial DNA. BMC Evol Biol 12:194CrossRefGoogle Scholar
  8. Gorbachev VV, Chernoivanova LA, Panfilova PN, Trofimov IK, Batanov RL et al (2012) Phylogeography of Pacific herring Clupea pallasii from Eurasian seas. Russ J Genet 48:933–938CrossRefGoogle Scholar
  9. Grant WS (1984) Biochemical population genetics of Atlantic herring, Clupea harengus. Copeia 1984:357–364CrossRefGoogle Scholar
  10. Grant WS (1986) Biochemical genetic divergence between Atlantic, Clupea harengus, and Pacific, Clupea pallasi, herring. Copeia 1986:714–719CrossRefGoogle Scholar
  11. Grant WS, Liu M, Gao T, Yanagimoto T (2012) Limits of Bayesian skyline plot analysis of mtDNA sequences to infer historical demographies in Pacific herring (and other species). Mol Phylogenet Evol 65:203–212CrossRefGoogle Scholar
  12. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4.
  13. Hognestad PT (1994) The Lake Rossfjord herring (Clupea harengus L) and its environment. ICES J Mar Sci 51:281–292CrossRefGoogle Scholar
  14. Hopkins CCE, Grotnes PE, Eliassen J-E (1989) Organization of a fjord community at 70° north: the pelagic food web in Balsfjord, northern Norway. Rapp Pv Réun Cons Int Explor Mer 188:146–153Google Scholar
  15. Hubbs CL (1955) Hybridization between fish species in nature. Syst Zool 4:s1–20CrossRefGoogle Scholar
  16. Jørstad KE (2004) Evidence for two highly differentiated herring groups at Goose Bank in the Barents Sea and the genetic relationship to Pacific herring, Clupea pallasi. Environ Biol Fishes 69:211–221CrossRefGoogle Scholar
  17. Jørstad KE, Pedersen SA (1986) Discrimination of herring populations in a Northern Norwegian fjord: genetic and biological aspects. ICES CM H:63Google Scholar
  18. Jørstad KE, King DPF, Naevdal G (1991) Population structure of Atlantic herring, Clupea harengus L. J Fish Biol 39:43–52CrossRefGoogle Scholar
  19. Jørstad KE, Dahle G, Paulsen OI (1994) Genetic comparison between Pacific herring (Clupea pallasi) and a Norwegian fjord stock of Atlantic herring (Clupea harengus). Can J Fish Aquat Sci 51:233–239CrossRefGoogle Scholar
  20. Jørstad KE, Novikov GG, Stasenkova NJ, Røttingen I, Stasenkov VA et al (2001) Intermingling of herring stocks in the Barents Sea area. In: Funk F, Blackburn J, Hay D, Paul AJ, Stephenson R, Toresen R, Witherell D (eds) Herring: expectations for a new millennium. University of Alaska Sea Grant College Program, Fairbanks, pp 629–633Google Scholar
  21. Laakkonen HM, Lajus DL, Strelkov P, Väinölä R (2013) Phylogeography of amphi-boreal fish: tracing the history of the Pacific herring Clupea pallasii in North-East European seas. BMC Evol Biol 13:67CrossRefGoogle Scholar
  22. Lajus DL (2002) Long-term discussion on the stocks of the White Sea herring: historical perspective and present state. ICES J Mar Sci 215:315–322Google Scholar
  23. Lajus DL, Alekseeva YI, Lajus JA (2007) Herring fisheries in the White Sea in the 18th-beginning of the 20th centuries: spatial and temporal patterns and factors affecting the catch fluctuations. Fish Res 87:255–259CrossRefGoogle Scholar
  24. Lewis PO, Zaykin D (2002) Genetic data analysis: computer program for the analysis of allelic data. Version 1.1.
  25. Lexer C, Buerkle CA, Joseph JA, Heinze B, Fay MF (2007) Admixture in European Populus hybrid zones makes feasible the mapping of loci that contribute to reproductive isolation and trait differences. Heredity 98:74–84CrossRefGoogle Scholar
  26. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefGoogle Scholar
  27. Lie U, Dahl O, Østvedt OJ (1978) Aspects of the life history of the local herring stock in Lindåspollene, western Norway. Fiskeridirektoratets Skrifter, Serie Havundersøkelser 16:369–404Google Scholar
  28. Liu J-X, Tatarenkov A, Beacham TD, Gorbachev V, Wildes S et al (2011) Effects of Pleistocene climatic fluctuations on the phylogeographic and demographic histories of Pacific herring (Clupea pallasii). Mol Ecol 20:3879–3893CrossRefGoogle Scholar
  29. McCusker MR, Denti D, Van Guelpen L, Kenchington E, Bentzen P (2013) Barcoding Atlantic Canada’s commonly encountered marine fishes. Mol Ecol Resour 13:177–188CrossRefGoogle Scholar
  30. Murphy RW, Sites JJW, Buth DG, Haufler CH (1996) Proteins I: isozyme electrophoresis. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer Associates, Sunderland, pp 51–132Google Scholar
  31. Muto N, Kai Y, Noda T, Nakabo T (2013) Extensive hybridization and associated geographic trends between two rockfishes Sebastes vulpes and S. zonatus (Teleostei: Scorpaeniformes: Sebastidae). J Evol Biol 26:1750–1762CrossRefGoogle Scholar
  32. Nikula R, Strelkov P, Väinölä R (2008) A broad transition zone between an inner Baltic hybrid swarm and a pure North Sea subspecies of Macoma balthica (Mollusca, Bivalvia). Mol Ecol 17:1505–1522CrossRefGoogle Scholar
  33. Novikov GG, Karpov AK, Andreeva AP, Semenova AV (2001) Herring of the White Sea. In: Funk F, Balckburn J, Hay D, Paul AJ, Stephenson R, Toresen R, Witherell D (eds) Herring: expectations for a new millennium. University of Alaska Sea Grant College Program, Fairbanks, pp 591–597Google Scholar
  34. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  35. Rass TS (1985) O sistematike morskikh seldei roda Clupea. Tr Zool Inst (Leningrad) 179:53–56Google Scholar
  36. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  37. Riginos C, Cunningham CW (2005) Local adaptation and species segregation in two mussel (Mytilus edulis × Mytilus trossulus) hybrid zones. Mol Ecol 14:381–400CrossRefGoogle Scholar
  38. Roques S, Sevigny JM, Bernatchez L (2001) Evidence for broadscale introgressive hybridization between two redfish (genus Sebastes) in the North-west Atlantic: a rare marine example. Mol Ecol 10:149–165CrossRefGoogle Scholar
  39. Runnström S (1941) Racial analysis of the herring in Norwegian waters. Fiskeridirektoratets Skrifter, Serie Havundersøkelser 6(7):1–110Google Scholar
  40. Ryman N, Lagercrantz U, Andersson L, Chakraborty R, Rosenberg R (1984) Lack of correspondence between genetic and morphologic variability patterns in Atlantic herring (Clupea harengus). Heredity 53:687–704CrossRefGoogle Scholar
  41. Salzburger W, Baric C, Sturmbauer C (2002) Speciation via introgressive hybridization in East African cichlids? Mol Ecol 11:619–625CrossRefGoogle Scholar
  42. Seeb LW (1998) Gene flow and introgression within and among three species of rockfishes, Sebastes auriculatus, S. caurinus, and S. maliger. J Hered 89:393–403CrossRefGoogle Scholar
  43. Semenova AV, Andreeva AA, Karpov AK, Novikov GG (2009) An analysis of allozyme variation in herring Clupea pallasii from the White and Barents Seas. J Ichthyol 49:313–330CrossRefGoogle Scholar
  44. Semenova AV, Andreeva AA, Karpov AK, Stroganov AN, Rubtsova GA et al (2013) Analysis of microsatellite loci variations in herring (Clupea pallasii marisalbi) from the White Sea. Russ J Genet 49:652–666CrossRefGoogle Scholar
  45. She JX, Autem M, Kotulas G, Pasteur N, Bonhomme F (1987) Multivariate-analysis of genetic exchanges between Solea aegyptiaca and Solea senegalensis (Teleosts, Soleidae). Biol J Linn Soc 32:357–371CrossRefGoogle Scholar
  46. Stemshorn KC, Reed FA, Nolte AW, Tautz D (2011) Rapid formation of distinct hybrid lineages after secondary contact of two fish species (Cottus sp.). Mol Ecol 20:1475–1491CrossRefGoogle Scholar
  47. Strelkov P, Nikula R, Väinölä R (2007) Macoma balthica in the White and Barents Seas: properties of a widespread marine hybrid swarm (Mollusca: Bivalvia). Mol Ecol 16:4110–4127CrossRefGoogle Scholar
  48. Svetovidov AN (1952) Seldevye (Clupeidae). In: Fauna SSSR. Ryby 2 Vol 1. Zoologicheskii Institut Akademiya Nauk, Moscow and Leningrad, pp 1–331 Google Scholar
  49. Teacher AGF, André C, Merilä J, Wheat CW (2012) Whole mitochondrial genome scan for population structure and selection in the Atlantic herring. BMC Evol Biol 12:2481CrossRefGoogle Scholar
  50. Turan C, Carvalho GR, Mork J (1998) Molecular genetic analysis of Atlanto-Scandian herring (Clupea harengus) populations using allozymes and mitochondrial DNA markers. J Mar Biol Assoc UK 78:269–283CrossRefGoogle Scholar
  51. Väinölä R (2003) Repeated trans-arctic invasions in littoral bivalves: molecular zoogeography of the Macoma balthica complex. Mar Biol 143:935–946CrossRefGoogle Scholar
  52. Väinölä R, Strelkov P (2011) Mytilus trossulus in Northern Europe. Mar Biol 158:817–833CrossRefGoogle Scholar
  53. Varvio SL, Koehn RK, Väinölä R (1988) Evolutionary genetics of the Mytilus edulis complex in the North Atlantic region. Mar Biol 98:51–60CrossRefGoogle Scholar
  54. Vermeij GJ (1991) Anatomy of an invasion: the trans-Arctic interchange. Paleobiology 17:281–307Google Scholar
  55. Vermeij GJ, Roopnarine PD (2008) The coming Arctic invasion. Science 321:780–781CrossRefGoogle Scholar
  56. Vines CA, Yoshida K, Griffin FJ, Pillai MC, Morisawa M et al (2002) Motility initiation in herring sperm is regulated by reverse sodium–calcium exchange. Proc Natl Acad Sci USA 99:2026–2031CrossRefGoogle Scholar
  57. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  58. Whitehead PJP (1985) Clupeoid fishes of the world (suborder Clupeoidei). An annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, shads, anchovies and wolf-herrings.  Part 1. Chirocentridae, Clupeidae and Pristigasteridae. FAO Species Catalogue Vol. 7. FAO, RomeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hanna M. Laakkonen
    • 1
  • Petr Strelkov
    • 2
  • Dmitry L. Lajus
    • 2
  • Risto Väinölä
    • 1
  1. 1.Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Ichthyology and HydrobiologySt. Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations