Marine Biology

, Volume 162, Issue 1, pp 99–110 | Cite as

Winter foraging site fidelity of king penguins breeding at the Falkland Islands

  • Alastair M. M. Baylis
  • Rachael A. Orben
  • Pierre Pistorius
  • Paul Brickle
  • Iain Staniland
  • Norman Ratcliffe
Original Paper


Foraging site fidelity has profound consequences for individual fitness, population processes and the effectiveness of species conservation measures. Accordingly, quantifying site fidelity has become increasingly important in animal movement and habitat selection studies. To assess foraging site fidelity in king penguins (Aptenodytes patagonicus) breeding at the Falkland Islands (51.48°S, 57.83°W), we measured overlap in time spent in foraging areas (at a 0.1° × 0.1° grid resolution) between successive foraging trips and foraging route consistency during the crèche period. In total, 30 complete foraging trips from seven king penguins were recorded between April and October 2010. King penguins predominantly foraged on the highly productive Patagonian slope, to the north of the Falkland Islands [median foraging trip distance 213 km (SD = 215 km) and duration 12.8 days (SD = 14.7 days)]. Overlap in time spent in an area on consecutive foraging trips ranged between 2 and 73 % (mean 27 %, SD = 22 %). Bearing during the outbound portion of foraging trips was typically highly repeatable for individual birds, but foraging trip duration and distance were not. Travel during the outbound phase of foraging trips was consistent with the direction of the northward-flowing Falkland Current that may act as a directional cue or facilitate rapid transit to foraging areas. Flexibility in foraging trip distances and durations may be a response to changes in resource availability and changes in the energetic requirements of adults and chicks over an extended breeding cycle.


Falkland Island King Penguin Shelf Slope Rockhopper Penguin Antarctic Polar Front 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research was undertaken with support from the World Wildlife Fund. We thank C. Dockrill for securing funding, S. Adlard, S. Crofts and M. Reeves for assisting with field work and J. Cheek for granting access to Volunteer Point. We are grateful to three anonymous reviewers that improved earlier drafts of the manuscript. Research was conducted under the Falkland Islands Government research permit R18/2011.


  1. Acha EM, Mianzan HW, Guerrero RA et al (2004) Marine fronts at the continental shelves of austral South America. J Mar Syst 44:83–105. doi: 10.1016/j.jmarsys.2003.09.005 CrossRefGoogle Scholar
  2. Arkhipkin AI, Middleton DAE, Sirota AM, Grzebielec R (2004) The effect of Falkland Current inflows on offshore ontogenetic migrations of the squid Loligo gahi on the southern shelf of the Falkland Islands. Estuar Coast Shelf Sci 60:11–22. doi: 10.1016/j.ecss.2003.11.016 CrossRefGoogle Scholar
  3. Arkhipkin AI, Brickle P, Laptikhovsky V, Winter A (2012) Dining hall at sea: feeding migrations of nektonic predators to the eastern Patagonian Shelf. J Fish Biol 81:882–902. doi: 10.1111/j.1095-8649.2012.03359.x CrossRefGoogle Scholar
  4. Augé AA, Chilvers BL, Moore AB, Davis LS (2013) Importance of studying foraging site fidelity for spatial conservation measures in a mobile predator. Anim Conserv. doi: 10.1111/acv.12056 Google Scholar
  5. Baylis AMM, Page B, Goldsworthy SD (2008) Effect of seasonal changes in upwelling activity on the foraging locations of a wide-ranging central-place forager, the New Zealand fur seal. Can J Zool 86:774–789. doi: 10.1139/Z08-055 CrossRefGoogle Scholar
  6. Baylis AMM, Page B, McKenzie J, Goldsworthy SD (2011) Individual foraging site fidelity in lactating New Zealand fur seals: Continental shelf versus oceanic habitats. Mar Mamm Sci. doi: 10.1111/j.1748-7692.2011.00487.x Google Scholar
  7. Beauplet G, Dubroca L, Guinet C et al (2004) Foraging ecology of subantarctic fur seals Arctocephalus tropicalis breeding on Amsterdam Island: seasonal changes in relation to maternal characteristics and pup growth. Mar Ecol Prog Ser 273:211–225. doi: 10.3354/meps273211 CrossRefGoogle Scholar
  8. Benhamou S (2004) How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension? J Theor Biol 229:209–220. doi: 10.1016/j.jtbi.2004.03.016 CrossRefGoogle Scholar
  9. Benoit-Bird K, Battaile B, Nordstrom C, Trites A (2013) Foraging behavior of northern fur seals closely matches the hierarchical patch scales of prey. Mar Ecol Prog Ser 479:283–302. doi: 10.3354/meps10209 CrossRefGoogle Scholar
  10. Bingman VP, Cheng K (2005) Mechanisms of animal global navigation: comparative perspectives and enduring challenges. Ethol Ecol Evol 17:295–318. doi: 10.1080/08927014.2005.9522584 CrossRefGoogle Scholar
  11. Bonadonna F, Lea M, Dehorter O, Guinet C (2001) Foraging ground fidelity and route-choice tactics of a marine predator: the Antarctic fur seal Arctocephalus gazella. Mar Ecol Prog Ser 223:287–297. doi: 10.3354/meps223287 CrossRefGoogle Scholar
  12. Bost C-A, Charrassin JB, Clerquin Y, Maho Y Le (2004) Exploitation of distant marginal ice zones by king penguins during winter. Mar Ecol Prog Ser 283:293–297Google Scholar
  13. Bost CA, Delord K, Barbraud C et al (2013) King Penguin. In: García Borboroglu PG, Boersma PD (eds) Penguins—Natural History and Conservation. University of Washington Press, Seattle U.S.A, pp 7–21Google Scholar
  14. Bradshaw C, Hindell M, Sumner M, Michael K (2004) Loyalty pays: potential life history consequences of fidelity to marine foraging regions by southern elephant seals. Anim Behav 68:1349–1360. doi: 10.1016/j.anbehav.2003.12.013 CrossRefGoogle Scholar
  15. Call K, Ream R, Johnson D et al (2008) Foraging route tactics and site fidelity of adult female northern fur seal (Callorhinus ursinus) around the Pribilof Islands. Deep Sea Res Part II Top Stud Oceanogr 55:1883–1896. doi: 10.1016/j.dsr2.2008.04.022 CrossRefGoogle Scholar
  16. Charnov EL (1976) Optimal foraging, the marginal value theorem. Theor Popul Biol 9:129–136CrossRefGoogle Scholar
  17. Charrassin J, Bost C-A (2001) Utilisation of the oceanic habitat by king penguins over the annual cycle. Mar Ecol Prog Ser 221:285–298. doi: 10.3354/meps221285 CrossRefGoogle Scholar
  18. Charrassin J-B, Bost C-A, Pütz K et al (1998) Foraging strategies of incubating and brooding king penguins Aptenodytes patagonicus. Oecologia 114:194–201. doi: 10.1007/s004420050436 CrossRefGoogle Scholar
  19. Cherel Y, Pütz K, Hobson K (2002) Summer diet of king penguins (Aptenodytes patagonicus) at the Falkland Islands, southern Atlantic Ocean. Polar Biol 25:898–906. doi: 10.1007/s00300-002-0419-2 Google Scholar
  20. Chilvers BL (2008) Foraging site fidelity of lactating New Zealand sea lions. J Zool 276:28–36. doi: 10.1111/j.1469-7998.2008.00463.x CrossRefGoogle Scholar
  21. Costa DP, Robinson PW, Arnould JPY et al (2010) Accuracy of ARGOS locations of Pinnipeds at-sea estimated using Fastloc GPS. PLoS One 5:e8677. doi: 10.1371/journal.pone.0008677 CrossRefGoogle Scholar
  22. Cotté C, Park Y, Guinet C, Bost C (2007) Movements of foraging king penguins through marine mesoscale eddies. Proc R Soc B Biol Sci 274:2385–2391. doi: 10.1098/rspb.2007.0775 CrossRefGoogle Scholar
  23. Dingle H, Drake VA (2007) What is migration? Bioscience 57:113. doi: 10.1641/B570206 CrossRefGoogle Scholar
  24. Fagan WF, Lewis MA, Auger-Méthé M et al (2013) Spatial memory and animal movement. Ecol Lett. doi: 10.1111/ele.12165 Google Scholar
  25. Franco BC, Piola AR, Rivas AL et al (2008) Multiple thermal fronts near the Patagonian shelf break. Geophys Res Lett 35:L02607. doi: 10.1029/2007GL032066 CrossRefGoogle Scholar
  26. Gagliardo A, Bried J, Lambardi P et al (2013) Oceanic navigation in Cory’s shearwaters: evidence for a crucial role of olfactory cues for homing after displacement. J Exp Biol 216:2798–2805. doi: 10.1242/jeb.085738 CrossRefGoogle Scholar
  27. Hamer K, Phillips R, Hill J et al (2001) Contrasting foraging strategies of gannets Morus bassanus at two North Atlantic colonies: foraging trip duration and foraging area fidelity. Mar Ecol Prog Ser 224:283–290. doi: 10.3354/meps224283 CrossRefGoogle Scholar
  28. Harris S, Raya Rey A, Zavalaga C, Quintana F (2014) Strong temporal consistency in the individual foraging behaviour of Imperial Shags Phalacrocorax atriceps. Ibis 156:523–533. doi: 10.1111/ibi.12159   
  29. Hedd A, Gales R, Brothers N (2001) Foraging strategies of shy albatross Thalassarche cauta breeding at Albatross Island, Tasmania, Australia. Mar Ecol Prog Ser 224:267–282. doi: 10.3354/meps224267 CrossRefGoogle Scholar
  30. Hillen J, Kiefer A, Veith M (2009) Foraging site fidelity shapes the spatial organisation of a population of female western barbastelle bats. Biol Conserv 142:817–823. doi: 10.1016/j.biocon.2008.12.017 CrossRefGoogle Scholar
  31. Hurly AT (2003) The twin threshold model: risk-intermediate foraging by rufous hummingbirds, Selasphorus rufus. Anim Behav 66:751–761. doi: 10.1006/anbe.2003.2278 CrossRefGoogle Scholar
  32. Irons DB (1998) Foraging area fidelity of individual seabirds in relation to tidal cycles and flock feeding. Ecology 79:647. doi: 10.2307/176960 CrossRefGoogle Scholar
  33. Johnson D, London J, Lea M, Durban J (2008) Continuous-time correlated random walk model for animal telemetry data. Ecology 89:1208–1215CrossRefGoogle Scholar
  34. Jouventin P, Capdeville D, Cuenot-chaillet F, Boiteau C (1993) Exploitation of pelagic resources by a non-flying seabird: satellite tracking of the king penguin throughout the breeding cycle. Mar Ecol Prog Ser 106:11–19CrossRefGoogle Scholar
  35. Le Bohec C, Gauthier-Clerc M, Grémillet D et al (2007) Population dynamics in a long-lived seabird: i. Impact of breeding activity on survival and breeding probability in unbanded king penguins. J Anim Ecol 76:1149–1160. doi: 10.1111/j.1365-2656.2007.01268.x CrossRefGoogle Scholar
  36. Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121CrossRefGoogle Scholar
  37. Matthiopoulos J (2003) The use of space by animals as a function of accessibility and preference. Ecol Modell 159:239–268. doi: 10.1016/S0304-3800(02)00293-4 CrossRefGoogle Scholar
  38. Monsarrat S, Benhamou S, Sarrazin F et al (2013) How predictability of feeding patches affects home range and foraging habitat selection in avian social scavengers? PLoS One 8:e53077. doi: 10.1371/journal.pone.0053077 CrossRefGoogle Scholar
  39. Montevecchi W, Benvenuti S, Garthe S et al (2009) Flexible foraging tactics by a large opportunistic seabird preying on forage- and large pelagic fishes. Mar Ecol Prog Ser 385:295–306. doi: 10.3354/meps08006 CrossRefGoogle Scholar
  40. Moore GJ, Wienecke B, Robertson G (1999) Seasonal change in foraging areas and dive depths of breeding king penguins at Heard Island. Polar Biol 21:376–384. doi: 10.1007/s003000050376 CrossRefGoogle Scholar
  41. Mori Y, Boyd I (2004) The behavioral basis for nonlinear functional responses and optimal foraging in Antarctic fur seals. Ecology 85:398–410CrossRefGoogle Scholar
  42. Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev Camb Philos Soc 85:935–956. doi: 10.1111/j.1469-185X.2010.00141.x Google Scholar
  43. Nevitt G, Reid K, Trathan P (2004) Testing olfactory foraging strategies in an Antarctic seabird assemblage. J Exp Biol 207:3537–3544. doi: 10.1242/jeb.01198 CrossRefGoogle Scholar
  44. Nordstrom CA, Battaile BC, Cotte C, Trites AW (2013) Foraging habitats of lactating northern fur seals are structured by thermocline depths and submesoscale fronts in the eastern Bering Sea. Deep Sea Res Part II Top Stud Oceanogr 88:78–96. doi: 10.1016/j.dsr2.2012.07.010
  45. Orsi, A. and Ryan, U. (2001) Locations of the various fronts in the southern ocean, Australian Antarctic Data Centre–CAASM Metadata (updated 2006)Google Scholar
  46. Otley H, Clausen AP, Christie D et al (2007) Breeding patterns of king penguins on the Falkland Islands. Emu 107:156. doi: 10.1071/MU06027 CrossRefGoogle Scholar
  47. Patrick SC, Bearhop S, Grémillet D et al (2014) Individual differences in searching behaviour and spatial foraging consistency in a central place marine predator. Oikos 123:33–40. doi: 10.1111/j.1600-0706.2013.00406.x CrossRefGoogle Scholar
  48. Péron C, Weimerskirch H, Bost C-A (2012) Projected poleward shift of king penguins’ (Aptenodytes patagonicus) foraging range at the Crozet Islands, southern Indian Ocean. Proc Biol Sci 279:2515–2523. doi: 10.1098/rspb.2011.2705 CrossRefGoogle Scholar
  49. Peterson RG (1992) The boundary currents in the western Argentine Basin. Deep Sea Res Part A 39(3–4):623–644Google Scholar
  50. Peterson RG, Whitworth III T (1989) The subantarctic and polar fronts in relation to deep water masses through the southwestern Atlantic. J Geophys Res 94:10817–10838. doi: 10.1029/JC094iC08p10817
  51. Phillips R, Silk J, Croxall JP et al (2004) Accuracy of geolocation estimates for flying seabirds. Mar Ecol Prog Ser 266:265–272. doi: 10.3354/meps266265 CrossRefGoogle Scholar
  52. Piper WH (2011) Making habitat selection more “familiar”: a review. Behav Ecol Sociobiol 65:1329–1351. doi: 10.1007/s00265-011-1195-1 CrossRefGoogle Scholar
  53. Pistorius PA, Baylis AMM, Crofts S, Pütz K (2012) Population development and historical occurrence of king penguins at the Falkland Islands. Antarct Sci 24:435–440. doi: 10.1017/S0954102012000302 CrossRefGoogle Scholar
  54. Pütz K (2002) Spatial and temporal variability in the foraging areas of breeding king penguins. Condor 104:528–538. CrossRefGoogle Scholar
  55. Pütz K, Cherel Y (2005) The diving behaviour of brooding king penguins (Aptenodytes patagonicus) from the Falkland Islands: variation in dive profiles and synchronous underwater swimming provide new insights into their foraging strategies. Mar Biol 147:281–290. doi: 10.1007/s00227-005-1577-x CrossRefGoogle Scholar
  56. Pütz K, Ingham RJ, Smith JG (2002) Foraging movements of Magellanic penguins Spheniscus magellanicus during the breeding season in the Falkland Islands. Aquat Conserv Mar Freshw Ecosyst 12:75–87CrossRefGoogle Scholar
  57. Pütz K, Smith JG, Ingham RJ, Luthi BH (2003) Satellite tracking of male rockhopper penguins Eudyptes chrysocome during the incubation period at the Falkland Islands. J Avian Biol 2:139–144CrossRefGoogle Scholar
  58. Ratcliffe N, Crofts S, Brown R et al (2014) Love thy neighbour or opposites attract? Patterns of spatial segregation and association among crested penguin populations during winter. J Biogeogr. doi: 10.1111/jbi.12279 Google Scholar
  59. Regular PM, Hedd A, Montevecchi WA (2013) Must marine predators always follow scaling laws? Memory guides the foraging decisions of a pursuit-diving seabird. Anim Behav 86:545–552. doi: 10.1016/j.anbehav.2013.06.008 CrossRefGoogle Scholar
  60. Rivas AL, Dogliotti AI, Gagliardini DA (2006) Seasonal variability in satellite-measured surface chlorophyll in the Patagonian Shelf. Cont Shelf Res 26:703–720. doi: 10.1016/j.csr.2006.01.013 CrossRefGoogle Scholar
  61. Roberts JJ, Best BD, Dunn DC et al (2010) Marine geospatial ecology tools: an integrated framework for ecological geoprocessing with ArcGIS, Python, R, MATLAB, and C++. Environ Model Softw 25:1197–1207. doi: 10.1016/j.envsoft.2010.03.029 CrossRefGoogle Scholar
  62. Robinson PW, Costa DP, Crocker DE et al (2012) Foraging behavior and success of a mesopelagic predator in the northeast Pacific Ocean: insights from a data-rich species, the northern elephant seal. PLoS One 7:e36728. doi: 10.1371/journal.pone.0036728 CrossRefGoogle Scholar
  63. Ronconi R, Burger A (2008) Limited foraging flexibility: increased foraging effort by a marine predator does not buffer against scarce prey. Mar Ecol Prog Ser 366:245–258. doi: 10.3354/meps07529 CrossRefGoogle Scholar
  64. Rounsevell DE, Copson GR (1982) Growth rate and recovery of a king penguin, Aptenodytes patagonicus, population after exploitation. Wildl Res 9(3):519–525. doi: 10.1071/WR9820519 CrossRefGoogle Scholar
  65. Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, PrincetonGoogle Scholar
  66. Sumner M (2010) trip:Spatial analysis of animal track data. R package version 1.1-6.
  67. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  68. Trathan PN, Bishop C, Maclean G et al (2008) Linear tracks and restricted temperature ranges characterise penguin foraging pathways. Mar Ecol Prog Ser 370:285–294. doi: 10.3354/meps07638 CrossRefGoogle Scholar
  69. Vaillant M, Bohec C, Prud’Homme O et al (2013) How age and sex drive the foraging behaviour in the king penguin. Mar Biol 160:1147–1156. doi: 10.1007/s00227-013-2167-y CrossRefGoogle Scholar
  70. van Beest FM, Vander Wal E, Stronen AV et al (2013) Temporal variation in site fidelity: scale-dependent effects of forage abundance and predation risk in a non-migratory large herbivore. Oecologia 173:409–420. doi: 10.1007/s00442-013-2647-2 CrossRefGoogle Scholar
  71. Villegas-Amtmann S, Atkinson S, Paras-Garcia A, Costa DP (2012) Seasonal variation in blood and muscle oxygen stores attributed to diving behavior, environmental temperature and pregnancy in a marine predator, the California sea lion. Comp Biochem Physiol A Mol Integr Physiol 162:413–420. doi: 10.1016/j.cbpa.2012.04.019 CrossRefGoogle Scholar
  72. Wakefield ED, Phillips RA, Trathan PN, Arata J, Gales R, Huin N, Robertson G, Waugh SM, Weimerskirch H, Matthiopoulos J (2011) Habitat preference, accessibility, and competition limit the global distribution of breeding Black-browed Albatrosses. Ecol Monogr 81:141–167. doi: 10.1890/09-0763.1
  73. Wakefield ED, Bodey TW, Bearhop S, et al (2013) Space Partitioning Without Territoriality in Gannets. Science (80-). doi:  10.1126/science.1236077
  74. Watanuki Y, Takahashi A, Sato K (2003) Feeding area specialization of chick-rearing Adélie Penguins Pygoscelis adeliae in a fast sea-ice area. Ibis (Lond 1859) 145:558–564. doi: 10.1046/j.1474-919X.2003.00165.x CrossRefGoogle Scholar
  75. Weimerskirch H (2007) Are seabirds foraging for unpredictable resources? Deep Sea Res Part II Top Stud Oceanogr 54:211–223. doi: 10.1016/j.dsr2.2006.11.013 CrossRefGoogle Scholar
  76. Weimerskirch H, Pinaud D, Pawlowski F, Bost C-A (2007) Does prey capture induce area-restricted search? A fine-scale study using GPS in a marine predator, the wandering albatross. Am Nat 170:734–743. doi: 10.1086/522059 CrossRefGoogle Scholar
  77. Wilson RP, Kreye JM, Lucke K, Urquhart H (2004) Antennae on transmitters on penguins: balancing energy budgets on the high wire. J Exp Biol 207:2649–2662. doi: 10.1242/jeb.01067 CrossRefGoogle Scholar
  78. Womble J, Sigler M (2006) Seasonal availability of abundant, energy-rich prey influences the abundance and diet of a marine predator, the Steller sea lion Eumetopias jubatus. Mar Ecol Prog Ser 325:281–293. doi: 10.3354/meps325281 CrossRefGoogle Scholar
  79. Wood SN (2006) Generalized additive models: an introduction with R. Chapman Hall/CRC, Boca Raton, FLGoogle Scholar
  80. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. doi: 10.1111/j.2041-210X.2009.00001.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alastair M. M. Baylis
    • 1
    • 2
    • 3
  • Rachael A. Orben
    • 4
  • Pierre Pistorius
    • 5
  • Paul Brickle
    • 3
  • Iain Staniland
    • 6
  • Norman Ratcliffe
    • 6
  1. 1.Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityWarrnamboolAustralia
  2. 2.Falklands ConservationStanleyFalkland Islands
  3. 3.South Atlantic Environmental Research InstituteStanleyFalkland Islands
  4. 4.Department of Ocean Sciences, Long Marine LabUniversity of California Santa CruzSanta CruzUSA
  5. 5.DST/NRF Centre of Excellence at the Percy FitzPatrick Institute of African Ornithology, Department of ZoologyNelson Mandela Metropolitan UniversityPort ElizabethSouth Africa
  6. 6.British Antarctic Survey NERCCambridgeUK

Personalised recommendations