Advertisement

Marine Biology

, Volume 162, Issue 1, pp 3–14 | Cite as

Mothers matter: contribution to local replenishment is linked to female size, mate replacement and fecundity in a fish metapopulation

  • Pablo Saenz-AgudeloEmail author
  • Geoffrey P. Jones
  • Simon R. Thorrold
  • Serge Planes
Feature Article

Abstract

A major assumption of marine population ecology and marine fisheries management is that female size is related to the number of eggs they produced, and therefore, to the number of recruits they produce. Yet, this assumption has seldom been tested. In the past, the difficulties associated with following the fate of individual larvae through the pelagic phase have precluded such analyses. Here, we used field estimates of reproduction combined with DNA profiling of all members of a wild population of the panda anemonefish (Amphiprion polymnus) over two consecutive years to investigate (1) the predictors of egg production and (2) the predictors of the number of recruits produced. We found that across one and two life history transitions, female size was a significant predictor of egg production, and egg production was a significant predictor of the number of recruits produced (when controlling for farness) respectively. When looking across three life history transitions, we found that large females and couples where no male replacement occurred were more likely to produce at least one recruit that settled within the local population than small females or females where the original male died and was replaced. However, we found no evidence supporting the hypothesis that larger females contributed numerically more recruits than smaller ones to local replenishment. These findings provide the first support for the common assumption that egg production is correlated with recruit production. They also suggest that the duration of partnership in anemonefishes couples might be an important factor in their population dynamics.

Keywords

Mate Replacement Coral Reef Fish Large Female Female Size Breeding Experience 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank Peter Buston, Bridget Green, Emily Giles, Myron A. Peck, Hugo Harrison and Glenn Almany for valuable comments on previous versions of the manuscript. We thank Chris McKelliget, Vanessa Messmer, Juan David Arango, Jennifer Smith, Agnes Rouchon and the Motupore Island Research Centre staff for assistance in the field. ARC Centre of Excellence, the National Science Foundation (OCE 0424688), the Coral Reef Initiatives for the Pacific (CRISP), the TOTAL Foundation, Populations Fractionees et Insulares (PPF EPHE) and the Connectivity Working Group of the global University of Queensland – World Bank – Global Environmental Facility project, Coral Reef Target Research and Capacity Building for Management for financial support. Special thanks to Motupore Island Research Centre, Dik Knight and Loloata Island resort for logistic support.

References

  1. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with Image J. Biophotonics Int 11(7):36–42Google Scholar
  2. Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GP (2007) Local replenishment of coral reef fish populations in a marine reserve. Science 316(5825):742–744CrossRefGoogle Scholar
  3. Almany G, Hamilton R, Matawal M, Bode M, Potuko T, Saenz-Agudelo P, Planes S, Berumen ML, Rhodes K, Thorrold SR, Jones JP, Russ GR (2013) Dispersal of grouper larvae drives local resource sharing in a coral reef fishery. Curr Biol 23:626–630. doi: 10.1016/j.cub.2013.03.006 CrossRefGoogle Scholar
  4. Beckerman AP, Benton TG, Lapsley CT, Koesters N (2006) How effective are maternal effects at having effects? Proc R Soc Lond B Biol Sci 273(1585):485–493. doi: 10.1098/rspb.2005.3315 CrossRefGoogle Scholar
  5. Begg GA, Marteinsdottir G (2000) Spawning origins of pelagic juvenile cod Gadus morhua inferred from spatially explicit age distributions: potential influences on year-class strength and recruitment. Mar Ecol Prog Ser 202:193–217CrossRefGoogle Scholar
  6. Beldade R, Holbrook S, Schmitt R, Planes S, Bernardi G (2009) Isolation and characterization of eight polymorphic microsatellite markers from the orange-fin anemonefish, Amphiprion chrysopterus. Conserv Genet Resour 1(1):333–335CrossRefGoogle Scholar
  7. Beldade R, Holbrook SJ, Schmitt RJ, Planes S, Malone D, Bernardi G (2012) Larger female fish contribute disproportionately more to self-replenishment. Proc R Soc Lond Ser B Biol Sci. doi: 10.1098/rspb.2011.2433
  8. Bergenius MAJ, Meekan MG, Robertson DR, McCormick MI (2002) Larval growth predicts the recruitment success of a coral reef fish. Oecologia 131:521–525CrossRefGoogle Scholar
  9. Berkeley SA, Chapman C, Sogard SM (2004a) Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology 85(5):1258–1264. doi: 10.1890/03-0706 CrossRefGoogle Scholar
  10. Berkeley SA, Hixon MA, Larson RJ, Love MS (2004b) Fisheries sustainability via protection of age structure and spatial distribution of fish populations. Fisheries 29(8):23–32. doi:10.1577/1548-8446(2004)29[23:FSVPOA]2.0.CO;2CrossRefGoogle Scholar
  11. Berumen ML, Almany GR, Planes S, Jones GP, Saenz-Agudelo P, Thorrold SR (2012) Persistence of self-recruitment and patterns of larval connectivity in a marine protected area network. Ecol Evol 2(2):444–452. doi: 10.1002/ece3.208 CrossRefGoogle Scholar
  12. Birkeland C, Dayton PK (2005) The importance in fishery management of leaving the big ones. Trends Ecol Evol 20(7):356–358CrossRefGoogle Scholar
  13. Buston PM (2003a) Forcible eviction and prevention of recruitment in the clown anemonefish. Behav Ecol 14(4):576–582CrossRefGoogle Scholar
  14. Buston PM (2003b) Mortality is associated with social rank in the clown anemonefish (Amphiprion percula). Mar Biol 143(4):811–815CrossRefGoogle Scholar
  15. Buston PM (2004) Does the presence of non-breeders enhance the fitness of breeders? An experimental analysis in the clown anemonefish Amphiprion percula. Behav Ecol Sociobiol 57(1):23–31CrossRefGoogle Scholar
  16. Buston PM, Elith J (2011) Determinants of reproductive success in dominant pairs of clownfish: a boosted regression tree analysis. J Anim Ecol 80:528–538. doi: 10.1111/j.1365-2656.2011.01803.x CrossRefGoogle Scholar
  17. Buston PM, Jones GP, Planes S, Thorrold SR (2012) Probability of successful larval dispersal declines fivefold over 1 km in a coral reef fish. Proc R Soc B Biol Sci 279(1735):1883–1888. doi: 10.1098/rspb.2011.2041 CrossRefGoogle Scholar
  18. Caley MJ, Carr MH, Hixon MA, Hughes TP, Jones GP, Menge BA (1996) Recruitment and the local dynamics of open marine populations. Annu Rev Ecol Syst 27(1):477–500. doi: 10.1146/annurev.ecolsys.27.1.477 CrossRefGoogle Scholar
  19. Christie MR, Johnson DW, Stallings CD, Hixon MA (2010) Self-recruitment and sweepstakes reproduction amid extensive gene flow in a coral-reef fish. Mol Ecol 19(5):1042–1057. doi: 10.1111/j.1365-294X.2010.04524.x CrossRefGoogle Scholar
  20. Christie MR, Tissot BN, Albins MA, Beets JP, Jia Y, Ortiz DM, Thompson SE, Hixon MA (2011) Larval connectivity in an effective network of marine protected areas. PLoS One 5(12):e15715CrossRefGoogle Scholar
  21. Clarke RD (1992) Effects of microhabitat and metabolic rate on food intake, growth and fecundity of two competing coral reef fishes. Coral Reefs 11(4):199–205. doi: 10.1007/bf00301994 CrossRefGoogle Scholar
  22. Crawley MJ (2007) The R book. Wiley, ChichesterCrossRefGoogle Scholar
  23. D’Aloia CC, Bogdanowicz SM, Majoris JE, Harrison RG, Buston PM (2013) Self-recruitment in a Caribbean reef fish: a method for approximating dispersal kernels accounting for seascape. Mol Ecol 22:2563–2572. doi: 10.1111/mec.12274 CrossRefGoogle Scholar
  24. Development Core Team R (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  25. Doherty P, Williams DM (1988) The replenishment of coral reef fish populations. Oceanogr Mar Biol Annu Rev 26:487–551Google Scholar
  26. Donelson JM, McCormick MI, Munday PL (2008) Parental condition affects early life-history of a coral reef fish. J Exp Mar Biol Ecol 360(2):109–116CrossRefGoogle Scholar
  27. Gagliano M, McCormick MI (2007) Maternal condition influences phenotypic selection on offspring. J Anim Ecol 76:174–182. doi: 10.1111/j.1365-2656.2006.01187.x CrossRefGoogle Scholar
  28. Gagliano M, McCormick MI, Meekan MG (2007) Survival against the odds: ontogenetic changes in selective pressure mediate growth-mortality trade-offs in a marine fish. Proc R Soc Lond Ser B Biol Sci 274(1618):1575–1582. doi: 10.1098/rspb.2007.0242 CrossRefGoogle Scholar
  29. Gerber S, Chabrier P, Kremer A (2003) FAMOZ: a software for parentage analysis using dominant, codominant and uniparentally inherited markers. Mol Ecol Notes 3(3):479–481. doi: 10.1046/j.1471-8286.2003.00439.x CrossRefGoogle Scholar
  30. Green BS (2008) Chapter 1 maternal effects in fish populations. In: Sims DW (ed) Advances in marine biology, vol 54. Academic Press, San Diego, pp 1–105Google Scholar
  31. Green BS, McCormick MI (2005) Maternal and paternal effects determine size, growth and performance in larvae of a tropical reef fish. Mar Ecol Prog Ser 289:263–272. doi: 10.3354/meps289263 CrossRefGoogle Scholar
  32. Harrison HB, Williamson DH, Evans RD, Almany GR, Thorrold SR, Russ GR, Fedheim KA, van Herwerden L, Planes S, Srinivasan M, Berumen ML, Jones GP (2012) Larval export from marine reserves and the recruitment benefit for fish and fisheries. Curr Biol 22(11):1023–1028. doi: 10.1016/j.cub.2012.04.008 CrossRefGoogle Scholar
  33. Hogan J, Thiessen R, Sale P, Heath D (2012) Local retention, dispersal and fluctuating connectivity among populations of a coral reef fish. Oecologia 168(1):61–71. doi: 10.1007/s00442-011-2058-1 CrossRefGoogle Scholar
  34. Jones GP, Milicich MJ, Emslie MJ, Lunow C (1999) Self-recruitment in a coral reef fish population. Nature 402(6763):802–804CrossRefGoogle Scholar
  35. Jones GP, Planes S, Thorrold SR (2005) Coral reef fish larvae settle close to home. Curr Biol 15(14):1314–1318. doi: 10.1016/j.cub.2005.06.061 CrossRefGoogle Scholar
  36. Jones GP, Almany G, Russ G, Sale P, Steneck R, van Oppen M, Willis B (2009) Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges. Coral Reefs 28(2):307–325. doi: 10.1007/s00338-009-0469-9 CrossRefGoogle Scholar
  37. Kritzer JP, Sale PF (2004) Metapopulation ecology in the sea: from Levins’ model to marine ecology and fisheries science. Fish Fish 5(2):131–140CrossRefGoogle Scholar
  38. Lambert Y (2008) Why should we closely monitor fecundity in marine fish populations? J Northwest Atl Fish Sci 41:93–106. doi: 10.2960/J.v41.m628 CrossRefGoogle Scholar
  39. Macpherson E, Raventos N (2005) Settlement patterns and post-settlement survival in two Mediterranean littoral fishes: influences of early-life traits and environmental variables. Mar Biol 148(1):167–177CrossRefGoogle Scholar
  40. Martin TG, Wintle BA, Rhodes JR, Kuhnert PM, Field SA, Low-Choy SJ, Tyre AJ, Possingham HP (2005) Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol Lett 8:1235–1246. doi: 10.1111/j.1461-0248.2005.00826.x CrossRefGoogle Scholar
  41. McCormick MI (2006) Mothers matter: crowding leads to stressed mothers and smaller offspring in marine fish. Ecology 87(5):1104–1109CrossRefGoogle Scholar
  42. Meekan MG, Vigliola L, Hansen A, Doherty PJ, Halford A, Carleton JH (2006) Bigger is better: size-selective mortality throughout the life history of a fast-growing clupeid, Spratelloides gracilis. Mar Ecol Prog Ser 317:237–244. doi: 10.3354/meps317237 CrossRefGoogle Scholar
  43. Mitchell JS (2003) Social correlates of reproductive success in false clown anemonefish: subordinate group members do not pay-to-stay. Evol Ecol Res 5:89–104Google Scholar
  44. Mora C, Andrefouet S, Costello MJ, Kranenburg C, Rollo A, Veron J, Gaston KJ, Myers RA (2006) Coral reefs and the global network of marine protected areas. Science 312(5781):1750–1751. doi: 10.1126/science.1125295 CrossRefGoogle Scholar
  45. Moyer JT, Steene RC (1979) Nesting behavior of the anemonefish Amphiprion polymnus. Jap J Ichthyol 26(2):209–214Google Scholar
  46. Palumbi SR (2004) Fisheries science: why mothers matter. Nature 430(7000):621–622CrossRefGoogle Scholar
  47. Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295. doi: 10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  48. Planes S, Jones GP, Thorrold SR (2009) Larval dispersal connects fish populations in a network of marine protected areas. Proc Natl Acad Sci USA 106(14):5693–5697. doi: 10.1073/pnas.0808007106 CrossRefGoogle Scholar
  49. Quenouille B, Bouchenak-Khelladi Y, Hervet C, Planes S (2004) Eleven microsatellite loci for the saddleback clownfish Amphiprion polymnus. Mol Ecol Notes 4(2):291–293. doi: 10.1111/j.1471-8286.2004.00646.x CrossRefGoogle Scholar
  50. Rattanayuvakorn S, Mungkornkarn P, Thongpan A, Chatchavalvanich K (2005) Embryonic development of Saddleback anemonefish, Amphiprion polymnus, Linnaeus (1758). Kasetsart J (Nat Sci) 39:455–463Google Scholar
  51. Raventos N, Macpherson E (2005) Effect of pelagic larval growth and size-at-hatching on post-settlement survivorship in two temperate labrid fish of the genus Symphodus. Mar Ecol Prog Ser 285:205–211. doi: 10.3354/meps285205 CrossRefGoogle Scholar
  52. Rickman SJ, Dulvy NK, Jennings S, Reynolds JD (2000) Recruitment variation related to fecundity in marine fishes. Can J Fish Aquat Sci 57(1):116–124. doi: 10.1139/f99-205 CrossRefGoogle Scholar
  53. Roberts CM, Polunin NVC (1991) Are marine reserves effective in management of reef fisheries? Rev Fish Biol Fish 1(1):65–91CrossRefGoogle Scholar
  54. Roughgarden J, Gaines S, Possingham H (1988) Recruitment dynamics in complex life cycles. Science 241(4872):1460–1466. doi: 10.1126/science.11538249 CrossRefGoogle Scholar
  55. Russ G (2002) Yet another review of marine reserves as reef fishery management tools. In: Sale P (ed) Coral reef fishes: dynamics and diversity in a complex ecoystem. Academic Press, San Diego, pp 421–443CrossRefGoogle Scholar
  56. Saenz-Agudelo P, Jones GP, Thorrold SR, Planes S (2011) Connectivity dominates larval replenishment in a coastal reef fish metapopulation. Proc R Soc Lond Ser B Biol Sci 278:2954–2961. doi: 10.1098/rspb.2010.2780 CrossRefGoogle Scholar
  57. Sale PF, Cowen RK, Danilowicz BS, Jones GP, Kritzer JP, Lindeman KC, Planes S, Polunin NVC, Russ GR, Sadovy YJ, Steneck RS (2005) Critical science gaps impede use of no-take fishery reserves. Trends Ecol Evol 20(2):74–80. doi: 10.1016/j.tree.2004.11.007 CrossRefGoogle Scholar
  58. Shanks AL, Grantham BA, Carr MH (2003) Propagule dispersal distance and the size and spacing of marine reserves. Ecol Appl 13(sp1):159–169. doi:10.1890/1051-0761(2003)013[0159:PDDATS]2.0.CO;2CrossRefGoogle Scholar
  59. Thorrold SR, Jones GP, Hellberg ME, Burton RS, Swearer SE, Neigel JE, Morgan SG, Warner RR (2002) Quantifying larval retention and connectivity in marine populations with artificial and natural markers. Bull Mar Sci 70(1):291–308Google Scholar
  60. Underwood AJ, Fairweather PG (1989) Supply-side ecology and benthic marine assemblages. Trends Ecol Evol 4(1):16–20. doi: 10.1016/0169-5347(89)90008-6 CrossRefGoogle Scholar
  61. Vallin L, Nissling A (2000) Maternal effects on egg size and egg buoyancy of Baltic cod, Gadus morhua: implications for stock structure effects on recruitment. Fish Res 49(1):21–37CrossRefGoogle Scholar
  62. Venturelli PA, Shuter BJ, Murphy CA (2009) Evidence for harvest-induced maternal influences on the reproductive rates of fish populations. Proc R Soc Lond Ser B Biol Sci 276(1658):919–924. doi: 10.1098/rspb.2008.1507 CrossRefGoogle Scholar
  63. Venturelli PA, Murphy CA, Shuter BJ, Johnston TA, van Coeverden de Groot PJ, Boag PT, Casselman JM, Montgomerie R, Wiegand MD, Leggett WC (2010) Maternal influences on population dynamics: evidence from an exploited freshwater fish. Ecology 91(7):2003–2012. doi: 10.1890/09-1218.1 CrossRefGoogle Scholar
  64. Vigliola L, Meekan M (2002) Size at hatching and planktonic growth determine post-settlement survivorship of a coral reef fish. Oecologia 131(1):89–93CrossRefGoogle Scholar
  65. Vigliola L, Doherty PJ, Meekan MG, Drown DM, Jones ME, Barber PH (2007) Genetic identity determines risk of post-settlement mortality of a marine fish. Ecology 88(5):1263–1277CrossRefGoogle Scholar
  66. Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10(1):249–256CrossRefGoogle Scholar
  67. Wright PJ, Gibb FM (2005) Selection for birth date in North Sea haddock and its relation to maternal age. J Anim Ecol 74(2):303–312CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pablo Saenz-Agudelo
    • 1
    • 4
    Email author
  • Geoffrey P. Jones
    • 2
  • Simon R. Thorrold
    • 3
  • Serge Planes
    • 1
  1. 1.USR 3278 Laboratoire d’Excellence CORAIL, CNRS-EPHE, CRIOBE - Centre de Biologie et d’Ecologie Tropicale et MéditerrannéenneUniversité de PerpignanPerpignan CedexFrance
  2. 2.ARC Centre of Excellence for Coral Reef Studies, School of Marine and Tropical BiologyJames Cook UniversityTownsvilleAustralia
  3. 3.Biology Department MS # 50Woods Hole Oceanographic InstitutionWoods HoleUSA
  4. 4.Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile

Personalised recommendations