Marine Biology

, Volume 161, Issue 10, pp 2243–2255 | Cite as

Higher trophic level prey does not represent a higher quality diet in a threatened seabird: implications for relating population dynamics to diet shifts inferred from stable isotopes

  • Kyle W. MorrisonEmail author
  • Sarah J. Bury
  • David R. Thompson
Original Paper


Diet quality is a key determinant of population dynamics. If a higher trophic level, more fish-based diet is of higher quality for marine predators, then individuals with a higher trophic level diet should have a greater body mass than those feeding at a lower trophic level. We examined this hypothesis using stable isotope analysis to infer dietary trophic level and foraging habitat over three years in eastern rockhopper penguins Eudyptes chrysocome filholi on sub-Antarctic Campbell Island, New Zealand. Rockhopper penguins are ‘Vulnerable’ to extinction because of widespread and dramatic population declines, perhaps related to nutritional stress caused by a climate-induced shift to a lower trophic level, lower quality diet. We related the stable nitrogen (δ15N) and carbon (δ13C) isotope values of blood from 70 chicks, 55 adult females, and 55 adult males to their body masses in the 2010, 2011, and 2012 breeding seasons and examined year, stage, age, and sex differences. Opposite to predictions, heavier males consumed a lower trophic level diet during incubation in 2011, and average chick mass was heavier in 2011 when chicks were fed a more zooplankton-based, pelagic/offshore diet than in 2012. Contrary to the suggested importance of a fish-based diet, our results support the alternative hypothesis that rockhopper penguin populations are likely to be most successful when abundant zooplankton prey are available. We caution that historic shifts to lower trophic level prey should not be assumed to reflect nutritional stress and a cause of population declines.


High Trophic Level Falkland Island Rockhopper Penguin Adult Body Mass Magellanic Penguin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Our thanks to the two anonymous reviewers of this manuscript for constructive comments. P. Battley, D. Armstrong, P. Sagar, and S. Jamieson provided helpful comments and discussion. Thanks to J. Brown for conducting the SIA. Our methods were approved by the Massey University Animal Ethics Committee, protocol no. 10/90. K.W.M. is grateful to Massey University, the Natural Sciences and Engineering Research Council of Canada, and Education New Zealand for financial support. This work was supported by the New Zealand Ministry of Business, Innovation, and Employment (contract C01X0905 to the National Institute for Water and Atmospheric Research). Additional research funding was generously provided by the J.S. Watson Conservation Trust of the Royal Forest and Bird Protection Society of New Zealand, the Hutton Fund of The Royal Society of New Zealand, and the Penguin Fund of Japan. We are grateful to S. Cockburn at the New Zealand Department of Conservation, National Office for providing RFID data loggers. Thank you to the Department of Conservation, Southland Conservancy for supporting our research on Campbell Island, and to H. Haazen and the crew of RV ‘Tiama’ for safe transport. This research would not have been possible without the skillful penguin-wrangling of N. Morrison, R. Buchheit, and R. Dunn.


  1. Ainley DG, Blight LK (2009) Ecological repercussions of historical fish extraction from the Southern Ocean. Fish Fish 10(1):13–38. doi: 10.1111/j.1467-2979.2008.00293.x CrossRefGoogle Scholar
  2. Alonzo SH, Switzer PV, Mangel M (2003) An ecosystem-based approach to management: using individual behaviour to predict the indirect effects of Antarctic krill fisheries on penguin foraging. J Appl Ecol 40(4):692–702. doi: 10.1046/j.1365-2664.2003.00830.x CrossRefGoogle Scholar
  3. Anthony JA, Roby DD, Turco KR (2000) Lipid content and energy density of forage fishes from the northern Gulf of Alaska. J Exp Mar Biol Ecol 248(1):53–78. doi: 10.1016/s0022-0981(00)00159-3 CrossRefGoogle Scholar
  4. Bailey AM, Sorensen JH (1962) Subantarctic Campbell Island. Denver Museum of Natural History, Denver COGoogle Scholar
  5. Baylis AMM, Wolfaardt AC, Crofts S, Pistorius PA, Ratcliffe N (2013) Increasing trend in the number of Southern Rockhopper Penguins (Eudyptes c. chrysocome) breeding at the Falkland Islands. Polar Biol 36(7):1007–1018. doi: 10.1007/s00300-013-1324-6 CrossRefGoogle Scholar
  6. Bearhop S, Waldron S, Votier SC, Furness RW (2002) Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiol Biochem Zool 75(5):451–458. doi: 10.1086/342800 CrossRefGoogle Scholar
  7. Bearhop S, Phillips RA, McGill R, Cherel Y, Dawson DA, Croxall JP (2006) Stable isotopes indicate sex-specific and long-term individual foraging specialisation in diving seabirds. Mar Ecol Prog Ser 311:157–164. doi: 10.3354/meps311157 CrossRefGoogle Scholar
  8. BirdLife International (2010) Rockhopper Penguins: a plan for research and conservation action to investigate and address population changes. In: Proceedings of an International Workshop, Edinburgh, 3–5 June 2008Google Scholar
  9. BirdLife International (2014) IUCN Red List for birds. Accessed 15 Feb 2014
  10. Birt V, Birt T, Goulet D, Cairns D, Montevecchi W (1987) Ashmole’s halo: direct evidence for prey depletion by a seabird. Mar Ecol Prog Ser 40(3):205–208CrossRefGoogle Scholar
  11. Boersma PD, Rebstock GA, Frere E, Moore SE (2009) Following the fish: penguins and productivity in the South Atlantic. Ecol Monogr 79(1):59–76. doi: 10.1890/06-0419.1 CrossRefGoogle Scholar
  12. Booth JM, McQuaid CD (2013) Northern rockhopper penguins prioritise future reproduction over chick provisioning. Mar Ecol Prog Ser 486:289–304. doi: 10.3354/meps10371 CrossRefGoogle Scholar
  13. Bradford-Grieve JM, Probert PK, Nodder SD, Thompson D, Hall J, Hanchet S, Boyd P, Zeldis J, Baker AN, Best HA, Broekhuizen N, Childerhouse S, Clark M, Hadfield M, Safi K, Wilkinson I (2003) Pilot trophic model for subantarctic water over the Southern Plateau, New Zealand: a low biomass, high transfer efficiency system. J Exp Mar Biol Ecol 289(2):223–262. doi: 10.1016/s0022-0981(03)00045-5 CrossRefGoogle Scholar
  14. Bugoni L, McGill RAR, Furness RW (2008) Effects of preservation methods on stable isotope signatures in bird tissues. Rapid Commun Mass Spectrom 22(16):2457–2462. doi: 10.1002/rcm.3633 CrossRefGoogle Scholar
  15. Burger AE (1991) Maximum diving depths and underwater foraging in alcids and penguins. In: Montevecchi WA, Gaston AJ (eds) Studies of high-latitude seabirds: behavioural, energetic and oceanographic aspects of seabird feeding ecology, vol 68. Canadian Wildlife Service, Ottawa, pp 9–15Google Scholar
  16. Butler DW, Fensham RJ, Murphy BP, Haberle SG, Bury SJ, Bowman DMJS (2014) Aborigine-managed forest, savanna and grassland: biome switching in montane eastern Australia. J Biogeogr (in press). doi: 10.1111/jbi.12306
  17. Cherel Y, Ridoux V (1992) Prey species and nutritive-value of food fed during summer to king penguin Aptenodytes patagonica chicks at Possession Island, Crozet archipelago. Ibis 134(2):118–127. doi: 10.1111/j.1474-919X.1992.tb08388.x CrossRefGoogle Scholar
  18. Cherel Y, Hobson KA, Hassani S (2005a) Isotopic discrimination between food and blood and feathers of captive penguins: implications for dietary studies in the wild. Physiol Biochem Zool 78(1):106–115. doi: 10.1086/425202 CrossRefGoogle Scholar
  19. Cherel Y, Hobson KA, Bailleul FR, Groscolas R (2005b) Nutrition, physiology, and stable isotopes: new information from fasting and molting penguins. Ecology 86(11):2881–2888. doi: 10.1890/05-0562 CrossRefGoogle Scholar
  20. Cherel Y, Hobson KA, Guinet C, Vanpe C (2007) Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialization in diving predators from the Southern Ocean. J Anim Ecol 76(4):826–836. doi: 10.1111/j.1365-2656.2007.01238.x CrossRefGoogle Scholar
  21. Cherel Y, Fontaine C, Richard P, Labat J-P (2010) Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean. Limnol Oceanogr 55(1):324–332. doi: 10.4319/lo.2010.55.1.0324 CrossRefGoogle Scholar
  22. Clarke A, Prince PA (1980) Chemical composition and calorific value of food fed to mollymauk chicks Diomedea melanophris and Diomedea chrysostoma at Bird Island, South Georgia. Ibis 122(4):488–494. doi: 10.1111/j.1474-919X.1980.tb00903.x CrossRefGoogle Scholar
  23. Cooper J, Brown C, Gales R, Hindell M, Klages N, Moors P, Pemberton D, Ridoux V, Thompson K, Van Heezik Y (1990) Diets and dietary segregation of crested penguins (Eudyptes). In: Davis LS, Darby JT (eds) Penguin biology. Academic Press, San Diego, CA, pp 131–156CrossRefGoogle Scholar
  24. Crawford RJM, Makhado AB, Upfold L, Dyer BM (2008) Mass on arrival of rockhopper penguins at Marion Island correlated with breeding success. Afr J Mar Sci 30(1):185–188. doi: 10.2989/ajms.2008. CrossRefGoogle Scholar
  25. Croxall JP, Callaghan T, Cervellati R, Walton DWH (1992) Southern ocean environmental changes: effects on seabird, seal and whale populations. Philos Trans R Soc B 338(1285):319–328. doi: 10.1098/rstb.1992.0152 CrossRefGoogle Scholar
  26. Croxall J, Reid K, Prince P (1999) Diet, provisioning and productivity responses of marine predators to differences in availability of Antarctic krill. Mar Ecol Prog Ser 177:115–131. doi: 10.3354/meps177115 CrossRefGoogle Scholar
  27. Cruz LL, McGill RAR, Goodman SJ, Hamer KC (2012) Stable isotope ratios of a tropical marine predator: confounding effects of nutritional status during growth. Mar Biol 159(4):873–880. doi: 10.1007/s00227-011-1864-7 CrossRefGoogle Scholar
  28. Cunningham DM, Moors PJ (1994) The decline of Rockhopper penguins Eudyptes chrysocome at Campbell Island, Southern Ocean and the influence of rising sea temperatures. Emu 94:27–36CrossRefGoogle Scholar
  29. Cury PM, Boyd IL, Bonhommeau S, Anker-Nilssen T, Crawford RJ, Furness RW, Mills JA, Murphy EJ, Österblom H, Paleczny M (2011) Global seabird response to forage fish depletion—one-third for the birds. Science 334(6063):1703–1706. doi: 10.1126/science.1212928 CrossRefGoogle Scholar
  30. Cuthbert R, Cooper J, Burle M-H, Glass CJ, Glass JP, Glass S, Glass T, Hilton GM, Sommer ES, Wanless RM, Ryan PG (2009) Population trends and conservation status of the Northern Rockhopper Penguin Eudyptes moseleyi at Tristan da Cunha and Gough Island. Bird Conserv Int 19(01):109–120. doi: 10.1017/s0959270908007545 CrossRefGoogle Scholar
  31. Décima M, Landry MR, Popp BN (2013) Environmental perturbation effects on baseline delta δ15N values and zooplankton trophic flexibility in the southern California Current Ecosystem. Limnol Oceanogr 58(2):624–634. doi: 10.4319/lo.2013.58.2.0624 CrossRefGoogle Scholar
  32. Dehnhard N, Poisbleau M, Demongin L, Chastel O, Noordwijk HJ, Quillfeldt P (2011a) Leucocyte profiles and corticosterone in chicks of southern rockhopper penguins. J Comp Physiol B 181(1):83–90. doi: 10.1007/s00360-010-0508-4 CrossRefGoogle Scholar
  33. Dehnhard N, Voigt CC, Poisbleau M, Demongin L, Quillfeldt P (2011b) Stable isotopes in southern rockhopper penguins: foraging areas and sexual differences in the non-breeding period. Polar Biol 34(11):1763–1773. doi: 10.1007/s00300-011-1026-x CrossRefGoogle Scholar
  34. Dehnhard N, Poisbleau M, Demongin L, Ludynia K, Lecoq M, Masello JF, Quillfeldt P (2013) Survival of rockhopper penguins in times of global climate change. Aquat Conserv 23(5):777–789. doi: 10.1002/aqc.2331 Google Scholar
  35. Deniro MJ, Epstein S (1978) Influence of diet on distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42(5):495–506. doi: 10.1016/0016-7037(78)90199-0 CrossRefGoogle Scholar
  36. Deniro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45(3):341–351. doi: 10.1016/0016-7037(81)90244-1 CrossRefGoogle Scholar
  37. Drago M, Cardona L, Aguilar A, Crespo EA, Ameghino S, Garcia N (2010) Diet of lactating South American sea lions, as inferred from stable isotopes, influences pup growth. Mar Mamm Sci 26(2):309–323. doi: 10.1111/j.1748-7692.2009.00321.x CrossRefGoogle Scholar
  38. Elliott KH, Ricklefs RE, Gaston AJ, Hatch SA, Speakman JR, Davoren GK (2013) High flight costs, but low dive costs, in auks support the biomechanical hypothesis for flightlessness in penguins. Proc Natl Acad Sci USA 110(23):9380–9384. doi: 10.1073/pnas.1304838110 CrossRefGoogle Scholar
  39. Emlen JM (1966) Role of time and energy in food preference. Am Nat 100(916):611–617. doi: 10.1086/282455 CrossRefGoogle Scholar
  40. Emslie SD, Patterson WP (2007) Abrupt recent shift in δ13C and δ15N values in Adélie penguin eggshell in Antarctica. Proc Natl Acad Sci USA 104(28):11666–11669. doi: 10.1073/pnas.0608477104 CrossRefGoogle Scholar
  41. Forero MG, Hobson KA, Bortolotti GR, Donázar JA, Bertellotti M, Blanco G (2002) Food resource utilisation by Magellanic penguin evaluated through stable isotope analysis: segregation by sex and age and influence of offspring quality. Mar Ecol Prog Ser 234:289–299. doi: 10.3354/meps234289 CrossRefGoogle Scholar
  42. Gomez-Campos E, Borrell A, Aguilar A (2011) Nitrogen and carbon stable isotopes do not reflect nutritional condition in the striped dolphin. Rapid Commun Mass Spectrom 25(9):1343–1347. doi: 10.1002/rcm.4999 CrossRefGoogle Scholar
  43. Green JA, Boyd IL, Woakes AJ, Green CJ, Butler PJ (2007) Feeding, fasting and foraging success during chick rearing in macaroni penguins. Mar Ecol Prog Ser 346:299–312. doi: 10.3354/meps07024 CrossRefGoogle Scholar
  44. Guinard E, Weimerskirch H, Jouventin P (1998) Population changes and demography of the Northern Rockhopper Penguin on Amsterdam and Saint Paul islands. Colon Waterbirds 21(2):222–228. doi: 10.2307/1521909 CrossRefGoogle Scholar
  45. Heath RGM, Randall RM (1985) Growth of jackass penguin chicks (Spheniscus demersus) hand reared on different diets. J Zool 205(1):91–105CrossRefGoogle Scholar
  46. Hilton GM, Thompson DR, Sagar PM, Cuthbert RJ, Cherel Y, Bury SJ (2006) A stable isotopic investigation into the causes of decline in a sub-Antarctic predator, the rockhopper penguin Eudyptes chrysocome. Glob Chang Biol 12(4):611–625. doi: 10.1111/j.1365-2486.2006.01130.x CrossRefGoogle Scholar
  47. Hobson KA, Clark RG (1992) Assessing avian diets using stable isotopes: 1. Turnover of 13C in tissues. Condor 94(1):181–188. doi: 10.2307/1368807 CrossRefGoogle Scholar
  48. Hobson KA, Piatt JF, Pitocchelli J (1994) Using stable isotopes to determine seabird trophic relationships. J Anim Ecol 63(4):786–798. doi: 10.2307/5256 CrossRefGoogle Scholar
  49. Jackson S (1992) Do seabird gut sizes and mean retention times reflect adaptation to diet and foraging method. Physiol Zool 65(3):674–697Google Scholar
  50. Jackson S, Duffy DC, Jenkins JFG (1987) Gastric digestion in marine vertebrate predators: in vitro standards. Funct Ecol 1(3):287–291. doi: 10.2307/2389433 CrossRefGoogle Scholar
  51. Jaeger A, Cherel Y (2011) Isotopic investigation of contemporary and historic changes in penguin trophic niches and carrying capacity of the southern Indian Ocean. PLoS One 6(2):e16484. doi: 10.1371/journal.pone.0016484 CrossRefGoogle Scholar
  52. Jaeger A, Lecomte VJ, Weimerskirch H, Richard P, Cherel Y (2010) Seabird satellite tracking validates the use of latitudinal isoscapes to depict predators’ foraging areas in the Southern Ocean. Rapid Commun Mass Spectrom 24(23):3456–3460. doi: 10.1002/rcm.4792 CrossRefGoogle Scholar
  53. Janssen MH, Arcese P, Kyser TK, Bertram DF, McFarlane-Tranquilla L, Williams T, Norris D (2009) Pre-breeding diet, condition, and timing of breeding in a threatened seabird, the marbled murrelet Brachyramphus marmoratus. Mar Ornithol 37:33–40Google Scholar
  54. Jodice PGR, Roby DD, Turco KR, Suryan RM, Irons DB, Piatt JF, Shultz MT, Roseneau DG, Kettle AB, Anthony JA (2006) Assessing the nutritional stress hypothesis: relative influence of diet quantity and quality on seabird productivity. Mar Ecol Prog Ser 325:267–279. doi: 10.3354/meps325267 CrossRefGoogle Scholar
  55. Kaehler S, Pakhomov EA (2001) Effects of storage and preservation on the δ13C and δ15N signatures of selected marine organisms. Mar Ecol Prog Ser 219:299–304. doi: 10.3354/meps219299 CrossRefGoogle Scholar
  56. Keymer I, Malcolm H, Hunt A, Horsley D (2001) Health evaluation of penguins (Sphenisciformes) following mortality in the Falklands (South Atlantic). Dis Aquat Organ 45(3):159–169. doi: 10.3354/dao045159 CrossRefGoogle Scholar
  57. Laws RM (1985) The ecology of the Southern Ocean. Am Sci 73(1):26–40Google Scholar
  58. Ludynia K, Dehnhard N, Poisbleau M, Demongin L, Masello JF, Voigt CC, Quillfeldt P (2013) Sexual segregation in rockhopper penguins during incubation. Anim Behav 85(1):255–267. doi: 10.1016/j.anbehav.2012.11.001 CrossRefGoogle Scholar
  59. MacArthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100(916):603–609. doi: 10.1086/282454 CrossRefGoogle Scholar
  60. Marchant S, Higgins PJ (eds) (1990) Eudyptes chrysocome Rockhopper Penguin, vol 1, Ratites to ducks; Part A, Ratites to petrels. Handbook of Australian, New Zealand and Antarctic Birds. Oxford University Press, MelbourneGoogle Scholar
  61. Masello JF, Mundry R, Poisbleau M, Demongin L, Voigt CC, Wikelski M, Quillfeldt P (2010) Diving seabirds share foraging space and time within and among species. Ecosphere 1(6):article 19. doi: 10.1890/es10-00103.1
  62. McClung MR, Seddon PJ, Massaro M, Setiawan A (2004) Nature-based tourism impacts on yellow-eyed penguins Megadyptes antipodes: does unregulated visitor access affect fledging weight and juvenile survival? Biol Conserv 119(2):279–285. doi: 10.1016/j.biocon.2003.11.012 CrossRefGoogle Scholar
  63. Meynier L, Morel PCH, MacKenzie DDS, MacGibbon A, Chilvers BL, Duignan PJ (2008) Proximate composition, energy content, and fatty acid composition of marine species from Campbell Plateau, New Zealand. N Z J Mar Fresh Res 42(4):425–437CrossRefGoogle Scholar
  64. Moody AT, Hobson KA, Gaston AJ (2012) High-arctic seabird trophic variation revealed through long-term isotopic monitoring. J Ornithol 153(4):1067–1078. doi: 10.1007/s10336-012-0836-0 CrossRefGoogle Scholar
  65. Moors P (1986) Decline in numbers of Rockhopper penguins at Campbell Island. Polar Rec 23(142):69–73CrossRefGoogle Scholar
  66. Moreno J, Barbosa A, De Leon A, Fargallo JA (1999) Phenotypic selection on morphology at independence in the Chinstrap penguin Pygoscelis antarctica. J Evol Biol 12(3):507–513CrossRefGoogle Scholar
  67. Norris DR, Arcese P, Preikshot D, Bertram DF, Kyser TK (2007) Diet reconstruction and historic population dynamics in a threatened seabird. J Appl Ecol 44(4):875–884. doi: 10.1111/j.1365-2664.2007.01329.x CrossRefGoogle Scholar
  68. Olsson O (1997) Effects of food availability on fledging condition and post-fledging survival in king penguin chicks. Polar Biol 18(3):161–165. doi: 10.1007/s003000050172 CrossRefGoogle Scholar
  69. Pauly D, Christensen V, Dalsgaard J, Froese R, Torres F (1998) Fishing down marine food webs. Science 279(5352):860–863. doi: 10.1126/science.279.5352.860 CrossRefGoogle Scholar
  70. Poisbleau M, Demongin L, Strange IJ, Otley H, Quillfeldt P (2008) Aspects of the breeding biology of the southern rockhopper penguin Eudyptes c. chrysocome and new consideration on the intrinsic capacity of the A-egg. Polar Biol 31(8):925–932. doi: 10.1007/s00300-008-0431-2 CrossRefGoogle Scholar
  71. Poisbleau M, Demongin L, Trouve C, Quillfeldt P (2009) Maternal deposition of yolk corticosterone in clutches of southern rockhopper penguins (Eudyptes chrysocome chrysocome). Horm Behav 55(4):500–506. doi: 10.1016/j.yhbeh.2009.02.002 CrossRefGoogle Scholar
  72. Poisbleau M, Demongin L, Chastel O, Eens M, Quillfeldt P (2011) Yolk androgen deposition in rockhopper penguins, a species with reversed hatching asynchrony. Gen Comp Endocrinol 170(3):622–628. doi: 10.1016/j.ygcen.2010.11.027 CrossRefGoogle Scholar
  73. Pütz K, Clausen AP, Huin N, Croxall JP (2003) Re-evaluation of historical rockhopper penguin population data in the Falkland Islands. Waterbirds 26(2):169–175. doi: 10.1675/1524-4695(2003)026[0169:ROHRPP]2.0.CO;2 CrossRefGoogle Scholar
  74. Pütz K, Raya Rey A, Huin N, Schiavini A, Pütz A, Lüthi BH (2006a) Diving characteristics of southern rockhopper penguins (Eudyptes c. chrysocome) in the southwest Atlantic. Mar Biol 149(2):125–137CrossRefGoogle Scholar
  75. Pütz K, Raya Rey A, Schiavini A, Clausen AP, Lüthi BH (2006b) Winter migration of rockhopper penguins (Eudyptes c. chrysocome) breeding in the Southwest Atlantic: is utilisation of different foraging areas reflected in opposing population trends? Polar Biol 29(9):735–744. doi: 10.1007/s00300-006-0110-0 CrossRefGoogle Scholar
  76. Robson B, Glass T, Glass N, Glass J, Green J, Repetto C, Rodgers G, Ronconi RA, Ryan PG, Swain G (2011) Revised population estimate and trends for the Endangered Northern Rockhopper Penguin Eudyptes moseleyi at Tristan da Cunha. Bird Conserv Int 21(04):454–459. doi: 10.1017/S0959270911000013 CrossRefGoogle Scholar
  77. Sagar P, Murdoch R, Sagar M, Thompson D (2005) Rockhopper penguin (Eudyptes chrysocome filholi) foraging at Antipodes Islands. Notornis 52(2):75–80Google Scholar
  78. Schamber JL, Esler D, Flint PL (2009) Evaluating the validity of using unverified indices of body condition. J Avian Biol 40(1):49–56. doi: 10.1111/j.1600-048X.2008.04462.x CrossRefGoogle Scholar
  79. Sears J, Hatch SA, O’Brien DM (2009) Disentangling effects of growth and nutritional status on seabird stable isotope ratios. Oecologia 159(1):41–48. doi: 10.1007/s00442-008-1199-3 CrossRefGoogle Scholar
  80. Sorensen MC, Hipfner JM, Kyser TK, Norris DR (2009) Carry-over effects in a Pacific seabird: stable isotope evidence that pre-breeding diet quality influences reproductive success. J Anim Ecol 78:460–467. doi: 10.1111/j.1365-2656.2008.01492.x CrossRefGoogle Scholar
  81. St. Clair CC, St. Clair RC (1996) Causes and consequences of egg loss in rockhopper penguins, Eudyptes chrysocome. Oikos 77(3):459–466CrossRefGoogle Scholar
  82. Thiebot JB, Cherel Y, Trathan PN, Bost CA (2012) Coexistence of oceanic predators on wintering areas explained by population-scale foraging segregation in space or time. Ecology 93(1):122–130CrossRefGoogle Scholar
  83. Thiebot JB, Authier M, Trathan PN, Bost CA (2013) Gentlemen first? ‘Broken stick’ modelling reveals sex-related homing decision date in migrating seabirds. J Zool 292(1):25–30. doi: 10.1111/jzo.12080 CrossRefGoogle Scholar
  84. Tremblay Y, Cherel Y (2000) Benthic and pelagic dives: a new foraging behaviour in rockhopper penguins. Mar Ecol Prog Ser 204:257–267. doi: 10.3354/meps204257 CrossRefGoogle Scholar
  85. Tremblay Y, Cherel Y (2003) Geographic variation in the foraging behaviour, diet and chick growth of rockhopper penguins. Mar Ecol Prog Ser 251:279–297. doi: 10.3354/meps251279 CrossRefGoogle Scholar
  86. Tremblay Y, Cherel Y (2005) Spatial and temporal variation in the provisioning behaviour of female rockhopper penguins Eudyptes chrysocome filholi. J Avian Biol 36(2):135–145. doi: 10.1111/j.0908-8857.2005.03309.x CrossRefGoogle Scholar
  87. Trites AW, Donnelly CP (2003) The decline of Steller sea lions Eumetopias jubatus in Alaska: a review of the nutritional stress hypothesis. Mammal Rev 33(1):3–28. doi: 10.1046/j.1365-2907.2003.00009.x CrossRefGoogle Scholar
  88. Velasco F, Olaso I (2000) Hake food consumption in the Southern Bay of Biscay estimated from a gastric evacuation model. ICES CM 2000/Q11Google Scholar
  89. Vlieg P (1984) Proximate analysis of 10 commercial New Zealand fish species. N Z J Sci 27(1):99–104Google Scholar
  90. Waluda CM, Hill SL, Peat HJ, Trathan PN (2012) Diet variability and reproductive performance of macaroni penguins Eudyptes chrysolophus at Bird Island, South Georgia. Mar Ecol Prog Ser 466:261–274. doi: 10.3354/meps09930 CrossRefGoogle Scholar
  91. Warham J (1972) Breeding seasons and sexual dimorphism in Rockhopper penguins. Auk 89(1):87–105CrossRefGoogle Scholar
  92. Wiley AE, Ostrom PH, Welch AJ, Fleischer RC, Gandhi H, Southon JR, Stafford TW, Penniman JF, Hu D, Duvall FP, James HF (2013) Millennial-scale isotope records from a wide-ranging predator show evidence of recent human impact to oceanic food webs. Proc Natl Acad Sci USA 110(22):8972–8977. doi: 10.1073/pnas.1300213110 CrossRefGoogle Scholar
  93. Williams CT, Buck CL, Sears J, Kitaysky AS (2007) Effects of nutritional restriction on nitrogen and carbon stable isotopes in growing seabirds. Oecologia 153(1):11–18. doi: 10.1007/s00442-007-0717-z CrossRefGoogle Scholar
  94. Wilson R, La Cock G, Wilson M-P, Mollagee F (1985) Differential digestion of fish and squid in Jackass Penguins Spheniscus demersus. Ornis Scand 16(1):77–79CrossRefGoogle Scholar
  95. Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314(5800):787–790. doi: 10.1126/science.1132294 CrossRefGoogle Scholar
  96. Yorio P, Garcia Borboroglu P, Potti J, Moreno J (2001) Breeding biology of Magellanic penguins Spheniscus magellanicus at Golfo San Jorge, Patagonia, Argentina. Mar Ornithol 29:75–79Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kyle W. Morrison
    • 1
    • 2
    Email author
  • Sarah J. Bury
    • 2
  • David R. Thompson
    • 2
  1. 1.Ecology Group, Institute of Natural ResourcesMassey UniversityPalmerston NorthNew Zealand
  2. 2.National Institute of Water and Atmospheric ResearchHataitai, WellingtonNew Zealand

Personalised recommendations