Marine Biology

, Volume 161, Issue 9, pp 2167–2178 | Cite as

Hitchhikers reveal cryptic host behavior: new insights from the association between Planes major and sea turtles in the Pacific Ocean

  • Joseph B. PfallerEmail author
  • Joanna Alfaro-Shigueto
  • George H. Balazs
  • Takashi Ishihara
  • Kerry Kopitsky
  • Jeffrey C. Mangel
  • S. Hoyt Peckham
  • Alan B. Bolten
  • Karen A. Bjorndal
Original Paper


Studies that incorporate information from habitat-specific ecological interactions (e.g., epibiotic associations) can reveal valuable insights into the cryptic habitat-use patterns and behavior of marine vertebrates. Sea turtles, like other large, highly mobile marine vertebrates, are inherently difficult to study, and such information can inform the implementation of conservation measures. The presence of epipelagic epibionts, such as the flotsam crab Planes major, on sea turtles strongly suggests that neritic turtles have recently occupied epipelagic habitats (upper 200 m in areas with >200 m depth) and that epipelagic turtles spend time at or near the surface. We quantified the effects of turtle species, turtle size, and habitat (neritic or epipelagic) on the frequency of epibiosis (F 0) by P. major on sea turtles in the Pacific Ocean. In neritic habitats, we found that loggerhead (F 0 = 27.6 %) and olive ridley turtles (F 0 = 26.2 %) host crabs frequently across a wide range of body sizes, and green turtles almost never host crabs (F 0 = 0.7 %). These results suggest that loggerheads and olive ridleys display variable/flexible epipelagic-neritic transitions, while green turtles tend to transition unidirectionally at small body sizes. In epipelagic habitats, we found that loggerheads host crabs (F 0 = 92.9 %) more frequently than olive ridleys (F 0 = 50 %) and green turtles (F 0 = 38.5 %). These results suggest that epipelagic loggerheads tend to spend more time at or near the surface than epipelagic olive ridleys and green turtles. Results of this study reveal new insights into habitat-use patterns and behavior of sea turtles and display how epibiont data can supplement data from more advanced technologies to gain a better understanding of the ecology of marine vertebrates during cryptic life stages.


Peru Green Turtle Loggerhead Turtle Turtle Species Baja California Peninsula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank all organizations and people that either supported or participated in crab collections in Japan (Sea Turtle Association of Japan, H Fukuie, S Watanabe, K Kawano, K Saito, M Hara, S Yamashita, K Hashimoto, K Ebisui, and Y Yasuoka), Hawaii (USGS National Wildlife Health Center, Honolulu Field Station, T Work), Samoa, Baja California Sur, México (David & Lucille Packard Foundation, US Fish & Wildlife Service, ProPeninsula, The Ocean Foundation, Equipo ProCaguama, Grupo Tortuguero V de la Toba, J Lucero, JM Rodríguez Barón), Mexico and Central America in 2003 (NMFS Southwest Fisheries Science Center and NOAA, and all scientific and support personnel working on cruises), and Peru (Darwin Sustainable Artisanal Fisheries Initiative—Peru). We also thank J Ferguson (University of Florida, Department of Biology) for statistical advice, and J Houghton and two anonymous reviewers for their valuable scientific and editorial comments.

Supplementary material

227_2014_2498_MOESM1_ESM.docx (78 kb)
Supplementary material 1 (DOCX 77 kb)


  1. Alfaro-Shigueto A, Mangel JC, Bernedo F, Dutton PH, Seminoff JA, Godley BJ (2011) Small-scale fisheries of Peru: a major sink for marine turtles in the Pacific. J Appl Ecol 48:1432–1440CrossRefGoogle Scholar
  2. Angulo-Lozano L, Nava-Duran PE, Frick MG (2007) Epibionts of olive ridley turtles nesting at Playa Ceuta, Sinaloa, Mexico. Mar Turt Newsl 118:13–14Google Scholar
  3. Barceló C, Peckham SH, Marinovic B (2008) What do hitchhikers eat? The diet of Planes cyaneus and their association with loggerhead and olive ridley turtles off the Pacific coast of Baja California Sur, Mexico. NOAA Tech Memo NMFS-SEFSC-569, p 118Google Scholar
  4. Bolten AB (2003) Variation in sea turtle life history patterns: neritic vs. oceanic developmental stages. In: Lutz PL, Musick JA, Wyneken J (eds) The biology of the sea turtles, vol II. CRC Press, Boca Raton, pp 243–257Google Scholar
  5. Brown CH, Brown WM (1995) Status of sea turtles in the Southeastern Pacific: emphasis on Perú. In: Bjorndal KA (ed) Biology and conservation of sea turtles. Smithsonian Institution Press, Washington, pp 235–240Google Scholar
  6. Bugoni L, Fiedler FN, Monteiro DS, Estima SC (2007) Eretmochelys imbricata (Hawksbill), Chelonia mydas (Green), and Caretta caretta (loggerhead) Seaturtle. Epizoans Herpetol Rev 38:199–200Google Scholar
  7. Caine EA (1986) Carapace epibionts of nesting loggerhead sea turtles: Atlantic coast of USA. J Exp Mar Biol Ecol 95:15–26CrossRefGoogle Scholar
  8. Carranza A, Domingo A, Verdi A, Forselledo R, Estrades A (2003) First report of an association between Planes cyaneus (Decapoda: Grapsidae) and loggerhead sea turtles in the Southwestern Atlantic Ocean. Mar Turt Newsl 103:5–7Google Scholar
  9. Chace FA (1951) The oceanic crabs of the genera Planes and Pachygrapsus. Proc US Natl Mus 101:65–103CrossRefGoogle Scholar
  10. Crane J (1937) The Templeton Crocker Expedition, III: Brachygnathous crabs from the Gulf of California and the west coast of Lower California. Zoologica 22:47–48Google Scholar
  11. Davenport J (1994) A cleaning association between the oceanic crab Planes minutus and the loggerhead sea turtle Caretta caretta. J Mar Biol Assoc UK 74:735–737CrossRefGoogle Scholar
  12. Dellinger T, Davenport J, Wirtz P (1997) Comparisons of social structure of Columbus crabs living on loggerhead sea turtles and inanimate flotsam. J Mar Biol Assoc UK 77:185–194CrossRefGoogle Scholar
  13. Eckert KL, Eckert SA (1988) Pre-reproductive movements of leatherback sea turtles (Dermochelys coriacea) nesting in the Caribbean. Copeia 1988:400–406CrossRefGoogle Scholar
  14. Faxon W (1895) Reports on an exploration off the west coasts of Mexico, Central and South America, and off the Galapagos Islands, in charge of Alexander Agassiz, by the U.S. Fish Commission steamer, Albatross, during 1891, Lieut-Commander Z.L. Tanner, U.S.N., commanding, 15: The stalk-eyed Crustacea. Mem Mus Comp Zool 18:1–292Google Scholar
  15. Frick MG, Pfaller JB (2013) Sea turtle epibiosis. In: Wyneken J, Lohmann KJ, Musick JA (eds) The biology of sea turtles, vol III. CRC Press, Boca Raton, pp 399–426CrossRefGoogle Scholar
  16. Frick MG, Williams KL, Robinson M (1998) Epibionts associated with nesting loggerhead sea turtles (Caretta caretta) in Georgia, USA. Herpetol Rev 29:211–214Google Scholar
  17. Frick MG, Williams KL, Veljacic D (2000) Additional evidence supporting a cleaning association between epibiotic crabs and sea turtles: how will the harvest of Sargassum seaweed impact this relationship? Mar Turt Newsl 20:11–13Google Scholar
  18. Frick MG, Williams KL, Bolten AB, Bjorndal KA, Martins HR (2004) Diet and fecundity of Columbus crabs, Planes minutus, associated with oceanic-stage loggerhead sea turtles, Caretta caretta, and inanimate flotsam. J Crustacean Biol 24:350–355CrossRefGoogle Scholar
  19. Frick MG, Williams KL, Bresette M, Singewald DA, Herren RM (2006) On the occurrence of Columbus crabs (Planes minutus) from loggerhead turtles in Florida, USA. Mar Turt Newsl 114:12–14Google Scholar
  20. Frick MG, Kopitsky K, Bolten AB, Bjorndal KA, Martins HR (2011) Sympatry in grapsoid crabs (genera Planes and Plagusia) from olive ridley sea turtles (Lepidochelys olivacea), with descriptions of crab diets and masticatory structures. Mar Biol 158:1699–1708CrossRefGoogle Scholar
  21. Graham RT, Witt MJ, Castellanos DW, Remolina F, Maxwell S, Godley BJ, Hawkes LA (2012) Satellite tracking of manta rays highlights challenges to their conservation. PLoS one 7:e36834CrossRefGoogle Scholar
  22. Guess RC (1981) A pacific loggerhead captured off California’s northern Channel Islands. Herpetol Rev 12:15Google Scholar
  23. Hatase H, Takai N, Matsuzawa Y, Sakamoto W, Omuta K, Goto K, Arai N, Fujiwara T (2002) Size-related differences in feeding habitat use of adult female loggerhead turtles Caretta caretta around Japan determined by stable isotope analyses and satellite telemetry. Mar Ecol Prog Ser 233:273–281CrossRefGoogle Scholar
  24. Hatase H, Sato K, Yamaguchi M, Takahashi K, Tsukamoto K (2006) Individual variation in feeding habitat use by adult female green sea turtles (Chelonia mydas): are they obligately neritic herbivores? Oecologia 146:52–64CrossRefGoogle Scholar
  25. Hatase H, Omuta K, Tsukamoto K (2010) Oceanic residents, neritic migrants: a possible mechanism underlying foraging dichotomy in adult female loggerhead turtles (Caretta caretta). Mar Biol 157:1337–1342CrossRefGoogle Scholar
  26. Hays GC, Åkesson S, Broderick AC, Glen F, Godley BJ, Luschi DJ, Martin C, Metcalfe JD, Papi F (2001) The diving behavior of green turtles undertaking oceanic migration to and from Ascension Island: dive durations, dive profiles and depth distribution. J Exp Biol 204:4093–4098Google Scholar
  27. Heppell SS, Crowder LB, Menzel TR (1999) Life table analysis of long-lived marine species with implications for conservation and management. In: Musick JA (ed) Life in the slow lane: ecology and conservation of long-lived marine animals. Am Fish Soc, Bethesda, pp 137–148Google Scholar
  28. Hernández-Vásquez S, Valadez-González C (1998) Observaciones de los epizoarios encontrados sobre la tortuga golfina Lepidochelys olivacea en La Gloria, Jalisco, México. Cienc Mar 24:119-125Google Scholar
  29. Hirji KF, Tan SJ, Elashoff RM (1991) A quasi-exact test for comparing two binomial proportions. Stat Med 10:1137–1153CrossRefGoogle Scholar
  30. Hosono T, Minami H (2011) Stable isotope analysis of epibiotic caprellids (Amphipoda) on loggerhead turtles provides evidence of turtle’s feeding history. In: Asakura A (ed) New frontiers in Crustacean Biology: proceedings of the TCS summer meeting, Tokyo, 20-24 September 2009. Koninklijke Brill NV, Leiden, pp 299–309CrossRefGoogle Scholar
  31. Howell EA, Dutton PH, Polovina JJ, Bailey H, Parker DM, Balazs GH (2010) Oceanographic influence on the dive behavior of juvenile loggerhead turtles (Caretta caretta) in the North Pacific Ocean. Mar Biol 157:1011–1026CrossRefGoogle Scholar
  32. Hubbs CL (1977) First record of mating of ridley turtles in California, with notes on commensals, characters, and systematics. Calif Fish Game 63:263–267Google Scholar
  33. Ishihara T, Kamezaki N, Matsuzawa Y, Iwamoto F, Oshika T, Miyagata Y, Ebisui C, Yamashita S (2011) Reentry of juvenile and subadult loggerhead turtles into natal waters of Japan. Curr Herpetol 30:63–68CrossRefGoogle Scholar
  34. Jones TT, Seminoff JA (2013) Feeding biology: advances from field-based observations, physiological studies, and molecular techniques. In: Wyneken J, Lohmann KJ, Musick JA (eds) The biology of sea turtles, vol III. CRC Press, Boca Raton, pp 211–247CrossRefGoogle Scholar
  35. Killingley JS, Lutcavage M (1983) Loggerhead turtle movements reconstructed from 18O and 13C profiles from commensal barnacle shells. Estuar Coast Shelf Sci 16:345–349CrossRefGoogle Scholar
  36. Kopitsky KL, Pitman RL, Dutton PH (2005) Aspects of olive ridley feeding ecology in the eastern tropical Pacific. NOAA Tech Memo. NMFS-SEFSC-528, p 217Google Scholar
  37. Lazo-Wasem E, Pinuo T, Peña de Niz A, Feuerstein A (2011) Epibionts associated with the nesting turtles Lepidochelys olivacea and Chelonia mydas in Jalisco, Mexico: a review and field guide. Bull Peabody Mus Nat Hist 52:221–240CrossRefGoogle Scholar
  38. Limpus CJ, Limpus DJ (2003) Biology of the loggerhead turtle in western south Pacific Ocean foraging areas. In: Bolten AB, Witherington BE (eds) Biology and conservation of the loggerhead sea turtle. Smithsonian Institution Press, Washington, pp 93–113Google Scholar
  39. Miranda L, Moreno RA (2002) Epibiontes de Lepidochelys olivacea (Eschscholtz, 1829) (Reptilia: Testudinata: Cheloniidae) en la región centro sur de Chile. Rev Biol Mar Oceanogr 37:145–146CrossRefGoogle Scholar
  40. Musick JA, Limpus CJ (1997) Habitat utilization and migration in juvenile sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 137–163Google Scholar
  41. Nichols WJ, Resendiz A, Mayoral-Russeau C (2000) Biology and Conservation of Loggerhead Turtles (Caretta caretta) in Baja California, Mexico. NOAA Tech Memo NMFS-SEFSC-443, p 169-171Google Scholar
  42. Parker DM, Cooke WJ, Balazs GH (2005) Diet of oceanic loggerhead sea turtles (Caretta caretta) in the central North Pacific. Fish Bull 103:142–152Google Scholar
  43. Peckham SH, Maldonado-Diaz D, Tremblay Y, Ochoa R, Polovina J, Balazs G, Dutton PH, Nichols WJ (2011) Demographic implications of alternative foraging strategies in juvenile loggerhead turtles Caretta caretta of the North Pacific Ocean. Mar Ecol Prog Ser 425:269–280CrossRefGoogle Scholar
  44. Pfaller JB, Frick MG, Reich KJ, Williams KL, Bjorndal KA (2008) Carapace epibionts of loggerhead turtles (Caretta caretta) nesting at Canaveral National Seashore, Florida. J Nat Hist 42:1095–1102CrossRefGoogle Scholar
  45. Plotkin PT (2010) Nomadic behaviour of the highly migratory olive ridley sea turtle Lepidochelys olivacea in the eastern tropical Pacific Ocean. Endanger Species Res 13:33–40CrossRefGoogle Scholar
  46. Polovina JJ, Howell E, Parker DM, Balazs GH (2003) Dive-depth distribution of loggerhead (Caretta caretta) and olive ridley (Lepidochelys olivacea) sea turtles in the central North Pacific: might deep longline sets catch fewer turtles? Fish Bull 101:189–193Google Scholar
  47. Polovina JJ, Balazs GH, Howell EA, Parker DM, Seki MP, Dutton PH (2004) Forage and migration habitat of loggerhead (Caretta caretta) and olive ridley (Lepidochelys olivacea) sea turtles in the central North Pacific Ocean. Fish Oceanogr 13:36–51CrossRefGoogle Scholar
  48. Pons M, Verdi A, Domingo A (2011) The pelagic crab Planes cyaneus (Dana, 1851) (Decapoda, Brachyura, Grapsidae) in the southwestern Atlantic Ocean in association with loggerhead sea turtles and buoys. Crustaceana 84:425–434CrossRefGoogle Scholar
  49. R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0
  50. Rathbun MJ (1902) Papers from the Hopkins Stanford Galapagos Expedition, 1898–1899, VIII: Brachyura and Macura. Proc Wash Acad Sci 4:275–292Google Scholar
  51. Reich KJ, Bjorndal KA, Frick MG, Witherington BE, Johnson C, Bolten AB (2010) Polymodal foraging in adult female loggerheads (Caretta caretta). Mar Biol 157:651–663CrossRefGoogle Scholar
  52. Rice MR, Balazs GH (2008) Diving behavior of the Hawaiian green turtle (Chelonia mydas) during oceanic migrations. J Exp Mar Biol Ecol 356:121–127CrossRefGoogle Scholar
  53. Saba VS (2013) Oceanic habits and habitats: Dermochelys coriacea. In: Wyneken J, Lohmann KJ, Musick JA (eds) The biology of sea turtles, vol III. CRC Press, Boca Raton, pp 163–188CrossRefGoogle Scholar
  54. Sakai T (1939) Studies on the crabs of Japan, IV: Brachygnatha, Brachyrhyncha. Yokendo, LTD, Tokyo, pp 365–741Google Scholar
  55. Schärer MT (2001) A survey of the epibiota of Eretmochelys imbricata (Testudines: Cheloniidae) of Mona Island, Puerto Rico. Rev Biol Trop 51:87–89Google Scholar
  56. Schweigger E (1964) El litoral Peruano. Grafica Morsom SA, LimaGoogle Scholar
  57. Seminoff JA, Jones TT, Resendiz A, Nichols WJ, Chaloupka MY (2003) Monitoring green turtles (Chelonia mydas) at a coastal foraging area in Baja California, Mexico: multiple indices describe population status. J Mar Biol Ass UK 83:1355–1362CrossRefGoogle Scholar
  58. Seminoff JA, Zárate P, Coyne MC, Foley DG, Parker D, Lyon BN, Dutton PH (2007) Post-nesting migrations of Galápagos green turtles Chelonia mydas in relation to oceanographic conditions: integrating satellite telemetry with remote sensed ocean data. Endanger Species Res 4:57–72CrossRefGoogle Scholar
  59. Steinbeck J, Ricketts EF (1941) Sea of Cortez. Viking Press, New YorkGoogle Scholar
  60. Wahl M, Mark O (1999) The predominately facultative nature of epibiosis: experimental and observational evidence. Mar Ecol Prog Ser 187:59–66CrossRefGoogle Scholar
  61. Wicksten MK, Behrens MD (2000) New record of the pelagic crab Planes cyaneus in California (Brachyura: Grapsidae). SCAMIT Newsl 19:7Google Scholar
  62. Work TM, Balazs GH (2010) Pathology and distribution of sea turtles landed as bycatch in the Hawaii-based North Pacific pelagic longline fishery. J Wildl Dis 46:422–432CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Joseph B. Pfaller
    • 1
    • 2
    Email author
  • Joanna Alfaro-Shigueto
    • 3
    • 4
  • George H. Balazs
    • 5
  • Takashi Ishihara
    • 6
    • 7
  • Kerry Kopitsky
    • 8
  • Jeffrey C. Mangel
    • 3
    • 4
  • S. Hoyt Peckham
    • 9
  • Alan B. Bolten
    • 1
  • Karen A. Bjorndal
    • 1
  1. 1.Archie Carr Center for Sea Turtle Research, Department of BiologyUniversity of FloridaGainesvilleUSA
  2. 2.Caretta Research ProjectSavannahUSA
  3. 3.ProDelphinusLima 18Peru
  4. 4.Centre for Ecology and ConservationUniversity of ExeterPenrynUK
  5. 5.Marine Turtle Research Program, National Ocean and Atmospheric Administration, National Marine Fisheries ServicePacific Islands Fisheries Science CenterHonoluluUSA
  6. 6.Sea Turtle Association of JapanOsakaJapan
  7. 7.Suma Aqualife ParkHyogoJapan
  8. 8.Rising Tides RestorationDoverUSA
  9. 9.Center for Ocean SolutionsStanford UniversityPacific GroveUSA

Personalised recommendations