Advertisement

Marine Biology

, Volume 161, Issue 9, pp 2131–2142 | Cite as

One size fits all: stability of metabolic scaling under warming and ocean acidification in echinoderms

  • Nicholas CareyEmail author
  • Sam Dupont
  • Bengt Lundve
  • Julia D. Sigwart
Original Paper

Abstract

Responses by marine species to ocean acidification (OA) have recently been shown to be modulated by external factors including temperature, food supply and salinity. However the role of a fundamental biological parameter relevant to all organisms, that of body size, in governing responses to multiple stressors has been almost entirely overlooked. Recent consensus suggests allometric scaling of metabolism with body size differs between species, the commonly cited ‘universal’ mass scaling exponent (b) of ¾ representing an average of exponents that naturally vary. One model, the Metabolic-Level Boundaries hypothesis, provides a testable prediction: that b will decrease within species under increasing temperature. However, no previous studies have examined how metabolic scaling may be directly affected by OA. We acclimated a wide body-mass range of three common NE Atlantic echinoderms (the sea star Asterias rubens, the brittlestars Ophiothrix fragilis and Amphiura filiformis) to two levels of pCO2 and three temperatures, and metabolic rates were determined using closed-chamber respirometry. The results show that contrary to some models these echinoderm species possess a notable degree of stability in metabolic scaling under different abiotic conditions; the mass scaling exponent (b) varied in value between species, but not within species under different conditions. Additionally, we found no effect of OA on metabolic rates in any species. These data suggest responses to abiotic stressors are not modulated by body size in these species, as reflected in the stability of the metabolic scaling relationship. Such equivalence in response across ontogenetic size ranges has important implications for the stability of ecological food webs.

Keywords

Metabolic Rate Ocean Acidification Elevated pCO2 Aerobic Scope Dynamic Energy Budget 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by the European Community—Research Infrastructure Action under the FP7 “Capacities” Programme ASSEMBLE [227799] for fieldwork and laboratory work at the Sven Lovén Centre for Marine Sciences, Kristineberg, and by the Department of Employment and Learning, N. Ireland, and Queen’s University Belfast Marine Laboratory. SD is funded by the Linnaeus Centre for Marine Evolutionary Biology at the University of Gothenburg and supported by a Linnaeus grant from the Swedish Research Councils VR and Formas. Thanks to Isabel Casties for assistance with water chemistry analysis. Three anonymous reviewers provided thoughtful and helpful suggestions that substantially improved an earlier version of this manuscript.

References

  1. Agutter PS, Wheatley DN (2004) Metabolic scaling: consensus or controversy? Theor Biol Med Model 1:1–13CrossRefGoogle Scholar
  2. Appelhans YS, Thomsen J, Pansch C et al (2012) Sour times: seawater acidification effects on growth, feeding behaviour and acid–base status of Asterias rubens and Carcinus maenas. Mar Ecol Prog Ser 459:85–98. doi: 10.3354/meps09697 CrossRefGoogle Scholar
  3. Benitez Villalobos F, Tyler PA, Young CM (2006) Temperature and pressure tolerance of embryos and larvae of the Atlantic sea stars Asterias rubens and Marthasterias glacialis (Echinodermata: Asteroidea): potential for deep-sea invasion. Mar Ecol Prog Ser 314:109–117. doi: 10.3354/meps314109 CrossRefGoogle Scholar
  4. Bindoff NL, Willebrand J, Artale V et al (2007) Observations: oceanic climate change and sea level. In: Climate and change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate changeGoogle Scholar
  5. Bokma F (2004) Evidence against universal metabolic allometry. Funct Ecol 18:184–187. doi: 10.1111/j.0269-8463.2004.00817.x CrossRefGoogle Scholar
  6. Brey T (2010) An empirical model for estimating aquatic invertebrate respiration. Methods Ecol Evol 1:92–101. doi: 10.1111/j.2041-210X.2009.00008.x CrossRefGoogle Scholar
  7. Brown JH, Gillooly JF, Allen AP et al (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789. doi: 10.1890/03-9000 CrossRefGoogle Scholar
  8. Byrne M (2011) Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr Mar Biol Annu Rev 49:1–42Google Scholar
  9. Byrne M, Lamare M, Winter D et al (2013) The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae: a synthesis from the tropics to the poles. Philos Trans R Soc B Biol Sci 368:20120439. doi: 10.1098/rstb.2012.0439 CrossRefGoogle Scholar
  10. Carey N, Sigwart JD, Richards JG (2013) Economies of scaling: more evidence that allometry of metabolism is linked to activity, metabolic rate and habitat. J Exp Mar Bio Ecol 439:7–14. doi: 10.1016/j.jembe.2012.10.013 CrossRefGoogle Scholar
  11. Catarino AI, Bauwens M, Dubois P (2012) Acid–base balance and metabolic response of the sea urchin Paracentrotus lividus to different seawater pH and temperatures. Environ Sci Pollut Res Int 19:2344–2353. doi: 10.1007/s11356-012-0743-1 CrossRefGoogle Scholar
  12. Christensen AB, Nguyen HD, Byrne M (2011) Thermotolerance and the effects of hypercapnia on the metabolic rate of the ophiuroid Ophionereis schayeri: inferences for survivorship in a changing ocean. J Exp Mar Bio Ecol 403:31–38. doi: 10.1016/j.jembe.2011.04.002 CrossRefGoogle Scholar
  13. Clark MS, Husmann G, Thorne MAS et al (2013) Hypoxia impacts large adults first: consequences in a warming world. Glob Chang Biol 19:2251–2263. doi: 10.1111/gcb.12197 CrossRefGoogle Scholar
  14. Cohen AL, Holcomb M (2009) Why corals care about ocean acidification: uncovering the mechanism. Oceanography 22:118–127. doi: 10.5670/oceanog.2009.102 CrossRefGoogle Scholar
  15. Collard M, Catarino AI, Bonnet S et al (2013) Effects of CO2-induced ocean acidification on physiological and mechanical properties of the starfish Asterias rubens. J Exp Mar Bio Ecol 446:355–362. doi: 10.1016/j.jembe.2013.06.003 CrossRefGoogle Scholar
  16. Darveau CA, Suarez RK, Andrews RD, Hochachka PW (2002) Allometric cascade as a unifying principle of body mass effects on metabolism. Nature 417:166–170CrossRefGoogle Scholar
  17. Dickinson GH, Matoo OB, Tourek RT et al (2013) Environmental salinity modulates the effects of elevated CO2 levels on juvenile hard-shell clams, Mercenaria mercenaria. J Exp Biol 216:2607–2618. doi: 10.1242/jeb.082909 CrossRefGoogle Scholar
  18. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res 34:1733–1743CrossRefGoogle Scholar
  19. Diffenbaugh NS, Field CB (2013) Changes in ecologically critical terrestrial climate conditions. Science 341:486–492. doi: 10.1126/science.1237123 CrossRefGoogle Scholar
  20. Dodds PS, Rothman DH, Weitz JS (2001) Re-examination of the “¾-law” of metabolism. J Theor Biol 209:9–27. doi: 10.1006/jtbi.2000.2238 CrossRefGoogle Scholar
  21. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192. doi: 10.1146/annurev.marine.010908.163834 CrossRefGoogle Scholar
  22. Doyle SR, Momo FR, Brêthes J-C, Ferreyra GA (2012) Metabolic rate and food availability of the Antarctic amphipod Gondogeneia antarctica (Chevreux 1906): seasonal variation in allometric scaling and temperature dependence. Polar Biol 35:413–424. doi: 10.1007/s00300-011-1089-8 CrossRefGoogle Scholar
  23. Duncan RP, Forsyth DM, Hone J (2007) Testing the metabolic theory of ecology: allometric scaling exponents in mammals. Ecology 88:324–333. doi: 10.1890/0012-9658(2007)88[324:TTMTOE]2.0.CO;2 CrossRefGoogle Scholar
  24. Dupont ST, Thorndyke MC (2012) Relationship between CO2-driven changes in extracellular acid–base balance and cellular immune response in two polar echinoderm species. J Exp Mar Bio Ecol 424–425:32–37. doi: 10.1016/j.jembe.2012.05.007 CrossRefGoogle Scholar
  25. Dupont ST, Thorndyke MC (2013) Direct impacts of near-future ocean acidification on sea urchins. In: Fernández-Palacios JM, de Nascimiento L, Hernández JC, et al. (eds) Climate change perspectives from the Atlantic:past, present, and future. Servicio de Publicaciones de La Universidad de La Laguna, San Cristobal de La Laguna, pp 461–485Google Scholar
  26. Dupont ST, Havenhand JN, Thorndyke W et al (2008) Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar Ecol Prog Ser 373:285–294. doi: 10.3354/meps07800 CrossRefGoogle Scholar
  27. Dupont ST, Ortega-Martinez O, Thorndyke MC (2010) Impact of near-future ocean acidification on echinoderms. Ecotoxicology 19:449–462. doi: 10.1007/s10646-010-0463-6 CrossRefGoogle Scholar
  28. Dupont ST, Dorey N, Stumpp M et al (2012) Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Mar Biol 160:1835–1843. doi: 10.1007/s00227-012-1921-x CrossRefGoogle Scholar
  29. Fabry VJ, Seibel BA, Feely RA (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432. doi: 10.1093/icesjms/fsn048 CrossRefGoogle Scholar
  30. Forster J, Hirst AG, Atkinson D (2012) Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc Natl Acad Sci 109:19310–19314. doi: 10.1073/pnas.1210460109 CrossRefGoogle Scholar
  31. Gaitán-Espitia JD, Bruning A, Mondaca F, Nespolo RF (2013) Intraspecific variation in the metabolic scaling exponent in ectotherms: testing the effect of latitudinal cline, ontogeny and transgenerational change in the land snail Cornu aspersum. Comp Biochem Physiol Part A Mol Integr Physiol 165:169–177. doi: 10.1016/j.cbpa.2013.03.002 Google Scholar
  32. Gianguzza P, Visconti G, Gianguzza F et al (2014) Temperature modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to CO2-driven acidification. Mar Environ Res 93:70–77. doi: 10.1016/j.marenvres.2013.07.008 CrossRefGoogle Scholar
  33. Gifford ME, Clay TA, Peterman WE (2013) The effects of temperature and activity on intraspecific scaling of metabolic rates in a lungless salamander. J Exp Zool Part A Ecol Genet Physiol 319:230–236. doi: 10.1002/jez.1787 CrossRefGoogle Scholar
  34. Glazier DS (2005) Beyond the “¾ power law”: variation in the intra- and interspecific scaling of metabolic rate in animals. Biol Rev 80:611–662CrossRefGoogle Scholar
  35. Glazier DS (2006) The ¾-power law is not universal: evolution of isometric, ontogenetic metabolic scaling in pelagic animals. Bioscience 56:325–332. doi: 10.1641/0006-3568(2006)56[325:TPLINU]2.0.CO;2 CrossRefGoogle Scholar
  36. Glazier DS (2010) A unifying explanation for diverse metabolic scaling in animals and plants. Biol Rev 85:111–138. doi: 10.1111/j.1469-185X.2009.00095.x CrossRefGoogle Scholar
  37. Hayward PJ, Ryland JS (1996) Handbook of the Marine Fauna of North-West Europe, p 800Google Scholar
  38. Hemmingsen AM (1960) Energy metabolism as related to body size and respiratory surfaces, and its evolution. Steno Meml Hosp Nord Insul Laboratosium 9:6–110Google Scholar
  39. Hernroth B, Baden S, Thorndyke MC, Dupont ST (2011) Immune suppression of the echinoderm Asterias rubens (L.) following long-term ocean acidification. Aquat Toxicol 103:222–224. doi: 10.1016/j.aquatox.2011.03.001 CrossRefGoogle Scholar
  40. Hettinger A, Sanford E, Hill TM et al (2013) The influence of food supply on the response of Olympia oyster larvae to ocean acidification. Biogeosci Discuss 10:5781–5802. doi: 10.5194/bgd-10-5781-2013 CrossRefGoogle Scholar
  41. Hölker F (2003) The metabolic rate of roach in relation to body size and temperature. J Fish Biol 62:565–579. doi: 10.1046/j.1095-8649.2003.00048.x CrossRefGoogle Scholar
  42. Hu MY, Casties I, Stumpp M et al (2014) Energy metabolism and regeneration impaired by seawater acidification in the infaunal brittlestar, Amphiura filiformis. J Exp Biol. doi: 10.1242/jeb.100024
  43. Hughes SJM, Ruhl HA, Hawkins LE et al (2011) Deep-sea echinoderm oxygen consumption rates and an interclass comparison of metabolic rates in Asteroidea, Crinoidea, Echinoidea, Holothuroidea and Ophiuroidea. J Exp Biol 214:2512–2521. doi: 10.1242/jeb.055954 CrossRefGoogle Scholar
  44. Isaac NJB, Carbone C (2010) Why are metabolic scaling exponents so controversial? Quantifying variance and testing hypotheses. Ecol Lett 13:728–735. doi: 10.1111/j.1461-0248.2010.01461.x CrossRefGoogle Scholar
  45. Jensen MA, Fitzgibbon QP, Carter CG, Adams LR (2013) Effect of body mass and activity on the metabolic rate and ammonia-N excretion of the spiny lobster Sagmariasus verreauxi during ontogeny. Comp Biochem Physiol Part A Mol Integr Physiol 166:191–198. doi: 10.1016/j.cbpa.2013.06.003 Google Scholar
  46. Kagata H, Ohgushi T (2012) Carbon to nitrogen excretion ratio in lepidopteran larvae: relative importance of ecological stoichiometry and metabolic scaling. Oikos 121:1869–1877. doi: 10.1111/j.1600-0706.2012.20274.x CrossRefGoogle Scholar
  47. Kelly MW, Hofmann GE (2012) Adaptation and the physiology of ocean acidification. Funct Ecol 27:980–990. doi: 10.1111/j.1365-2435.2012.02061.x CrossRefGoogle Scholar
  48. Killen SS, Atkinson D, Glazier DS (2010) The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature. Ecol Lett 13:184–193. doi: 10.1111/j.1461-0248.2009.01415.x CrossRefGoogle Scholar
  49. Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–353Google Scholar
  50. Kleiber M (1947) Body size and metabolic rate. Physiol Rev 27:511–541Google Scholar
  51. Kolokotrones T, Savage VM, Deeds EJ, Fontana W (2010) Curvature in metabolic scaling. Nature 464:753–756. doi: 10.1038/nature08920 CrossRefGoogle Scholar
  52. Kooijman SALM (2010) Dynamic energy budget theory for metabolic organisation, Cambridge University Press, Cambridge, p 66Google Scholar
  53. Kozłowski J, Konarzewski M, Gawelczyk AT (2003) Cell size as a link between noncoding DNA and metabolic rate scaling. Proc Natl Acad Sci 100:14080–14085CrossRefGoogle Scholar
  54. Kroeker KJ, Kordas RL, Crim R et al (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol 19:1884–1896. doi: 10.1111/gcb.12179 CrossRefGoogle Scholar
  55. Krogh A (1916) The respiratory exchange of animals and man. Int zeits Phys chem Biol 1:173Google Scholar
  56. Lawrence JM (1987) A functional biology of the echinoderms, Johns Hopkins University Press, Baltimore, p 340Google Scholar
  57. Lawrence JM, Lane JM (1982) The utilization of nutrients by post-metamorphic echinoderms. In: Jangoux M, Lawrence JM (eds) Echinoderm nutrition. Balkema, Rotterdam, pp 331–371Google Scholar
  58. Luo YP, Wang QQ (2012) Effects of body mass and temperature on routine metabolic rate of juvenile largemouth bronze gudgeon Coreius guichenoti. J Fish Biol 80:842–851. doi: 10.1111/j.1095-8649.2012.03229.x CrossRefGoogle Scholar
  59. Matozzo V, Chinellato A, Munari M et al (2012) First evidence of immunomodulation in bivalves under seawater acidification and increased temperature. PLoS One 7:e33820. doi: 10.1371/journal.pone.0033820 CrossRefGoogle Scholar
  60. McElhany P, Busch DS (2013) Appropriate pCO2 treatments in ocean acidification experiments. Mar Biol 160:1807–1812. doi: 10.1007/s00227-012-2052-0 CrossRefGoogle Scholar
  61. McElroy DJ, Nguyen HD, Byrne M (2012) Respiratory response of the intertidal seastar Parvulastra exigua to contemporary and near-future pulses of warming and hypercapnia. J Exp Mar Bio Ecol 416–417:1–7. doi: 10.1016/j.jembe.2012.02.003 CrossRefGoogle Scholar
  62. Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907CrossRefGoogle Scholar
  63. Melatunan S, Calosi P, Rundle SD et al (2011) Exposure to elevated temperature and pCO2 reduces respiration rate and energy status in the periwinkle Littorina littorea. Physiol Biochem Zool 84:583–594. doi: 10.1086/662680 CrossRefGoogle Scholar
  64. Morley SA, Hirse T, Pörtner HO, Peck LS (2009) Geographical variation in thermal tolerance within Southern Ocean marine ectotherms. Comp Biochem Physiol Part A Mol Integr Physiol 153:154–161Google Scholar
  65. Moses ME, Hou C, Woodruff WH et al (2008) Revisiting a model of ontogenetic growth: estimating model parameters from theory and data. Am Nat 171:632–645. doi: 10.1086/587073 CrossRefGoogle Scholar
  66. Newell RC (1973) Factors affecting the respiration of intertidal invertebrates. Am Zool 13:513–528. doi: 10.1093/icb/13.2.513 Google Scholar
  67. Ohlberger J, Mehner T, Staaks G, Hölker F (2012) Intraspecific temperature dependence of the scaling of metabolic rate with body mass in fishes and its ecological implications. Oikos 121:245–251. doi: 10.1111/j.1600-0706.2011.19882.x CrossRefGoogle Scholar
  68. Paine RT (1966) Food web complexity and species diversity. Am Nat 100:65–75. doi: 10.1086/282400 CrossRefGoogle Scholar
  69. Pane EF, Barry JP (2007) Extracellular acid-base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Mar Ecol Prog Ser 334:1–9CrossRefGoogle Scholar
  70. Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915. doi: 10.1126/science.1111322 CrossRefGoogle Scholar
  71. Peters RH (1983) The ecological implications of body size. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  72. Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692. doi: 10.1126/science.1163156 CrossRefGoogle Scholar
  73. Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97. doi: 10.1126/science.1135471 CrossRefGoogle Scholar
  74. R Core Development Team (2013) R: a language and environment for statistical computingGoogle Scholar
  75. Riisgård HU (1998) No foundation of a “¾ power scaling law” for respiration in biology. Ecol Lett 1:71–73. doi: 10.1046/j.1461-0248.1998.00020.x CrossRefGoogle Scholar
  76. Rubner M (1883) Über den Einfluss der Körpergrösse auf Stoff- und Kraftwechsel. Z Biol 19:535–562Google Scholar
  77. Savage VM, Deeds EJ, Fontana W (2008) Sizing up allometric scaling theory. PLoS Comput Biol 4:e1000171. doi: 10.1371/journal.pcbi.1000171 CrossRefGoogle Scholar
  78. Schmidt-Nielsen K (1984) Scaling: Why is animal size so important?. Cambridge University Press, Cambridge, p 256CrossRefGoogle Scholar
  79. Seibel BA (2007) On the depth and scale of metabolic rate variation: scaling of oxygen consumption rates and enzymatic activity in the Class Cephalopoda (Mollusca). J Exp Biol 210:1–11CrossRefGoogle Scholar
  80. Seibel BA, Drazen JC (2007) The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Philos Trans R Soc B Biol Sci 362:2061–2078CrossRefGoogle Scholar
  81. Sheridan JA, Bickford D (2011) Shrinking body size as an ecological response to climate change. Nat Clim Chang 1:401–406. doi: 10.1038/nclimate1259 CrossRefGoogle Scholar
  82. Sokal RR, Rohlf FJ (1995) Biometry, 3rd ed. 887Google Scholar
  83. Stumpp M, Wren J, Melzner F et al (2011) CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay. Comp Biochem Physiol Part A Mol Integr Physiol 160:331–340. doi: 10.1073/pnas.1209174109 Google Scholar
  84. Stumpp M, Hu MY, Melzner F, et al. (2012) Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. Proc Natl Acad Sci 109:18192–18197.doi: 10.1073/pnas.1209174109
  85. Suarez RK, Darveau CA, Childress JJ (2004) Metabolic scaling: a many-splendoured thing. Comp Biochem Physiol Part B Biochem Mol Biol 139:531–541CrossRefGoogle Scholar
  86. Symonds MRE, Elgar MA (2002) Phylogeny affects estimation of metabolic scaling in mammals. Evol Int J Org Evol 56:2330–2333CrossRefGoogle Scholar
  87. Truchot J-P, Duhamel-Jouve A (1980) Oxygen and carbon dioxide in the marine intertidal environment: diurnal and tidal changes in rockpools. Respir Physiol 39:241–254CrossRefGoogle Scholar
  88. Vaca HF, White CR (2010) Environmental modulation of metabolic allometry in ornate rainbowfish Rhadinocentrus ornatus. Biol Lett 6:136–138. doi: 10.1098/rsbl.2009.0610 CrossRefGoogle Scholar
  89. Waldbusser GG, Bergschneider H, Green MA (2010) Size-dependent pH effect on calcification in post-larval hard clam Mercenaria spp. Mar Ecol Prog Ser 417:171–182. doi: 10.3354/meps08809 CrossRefGoogle Scholar
  90. Warton DI, Duursma RA, Falster DS, Taskinen S (2012) SMATR 3—an R package for estimation and inference about allometric lines. Methods Ecol Evol 3:257–259. doi: 10.1111/j.2041-210X.2011.00153.x CrossRefGoogle Scholar
  91. Weldon CW, Daniels SR, Clusella-Trullas S, Chown SL (2013) Metabolic and water loss rates of two cryptic species in the African velvet worm genus Opisthopatus (Onychophora). J Comp Physiol B 183:323–332. doi: 10.1007/s00360-012-0715-2 CrossRefGoogle Scholar
  92. Wernberg T, Smale DA, Thomsen MS (2012) A decade of climate change experiments on marine organisms: procedures, patterns and problems. Glob Chang Biol 18:1491–1498. doi: 10.1111/j.1365-2486.2012.02656.x CrossRefGoogle Scholar
  93. West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126. doi: 10.1126/science.276.5309.122 CrossRefGoogle Scholar
  94. White CR (2011) Allometric estimation of metabolic rates in animals. Comp Biochem Physiol Part A Mol Integr Physiol 158:346–357. doi: 10.1016/j.cbpa.2010.10.004 Google Scholar
  95. White CR, Kearney MR (2013) Determinants of inter-specific variation in basal metabolic rate. J Comp Physiol B 183:1–26. doi: 10.1007/s00360-012-0676-5 CrossRefGoogle Scholar
  96. White CR, Kearney MR (2014) Metabolic scaling in animals: methods, empirical results, and theoretical explanations. Compr Physiol 4:231–256. doi: 10.1002/cphy.c110049 CrossRefGoogle Scholar
  97. White CR, Seymour RS (2003) Mammalian basal metabolic rate is proportional to body mass 2/3. Proc Natl Acad Sci 100:4046–4049. doi: 10.1073/pnas.0436428100 CrossRefGoogle Scholar
  98. White CR, Phillips NF, Seymour RS (2006) The scaling and temperature dependence of vertebrate metabolism. Biol Lett 2:125–127. doi: 10.1098/rsbl.2005.0378 CrossRefGoogle Scholar
  99. Widdicombe S, Spicer JI (2008) Predicting the impact of ocean acidification on benthic biodiversity: What can animal physiology tell us? J Exp Mar Bio Ecol 366:187–197. doi: 10.1016/j.jembe.2008.07.024 CrossRefGoogle Scholar
  100. Wood HL, Spicer JI, Widdicombe S (2008) Ocean acidification may increase calcification rates, but at a cost. Proc R Soc B Biol Sci 275:1767–1773. doi: 10.1098/rspb.2008.0343 CrossRefGoogle Scholar
  101. Wood HL, Spicer JI, Lowe DM, Widdicombe S (2010) Interaction of ocean acidification and temperature; the high cost of survival in the brittlestar Ophiura ophiura. Mar Biol 157:2001–2013. doi: 10.1007/s00227-010-1469-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nicholas Carey
    • 1
    • 2
    Email author
  • Sam Dupont
    • 3
  • Bengt Lundve
    • 3
  • Julia D. Sigwart
    • 1
    • 2
  1. 1.Marine LaboratoryQueen’s University BelfastCounty DownNorthern Ireland, UK
  2. 2.School of Biological SciencesQueen’s University BelfastBelfastNorthern Ireland, UK
  3. 3.Department of Marine Ecology, Sven Lovén Centre for Marine SciencesUniversity of GothenburgKristinebergSweden

Personalised recommendations