Marine Biology

, Volume 161, Issue 7, pp 1667–1676 | Cite as

Within- and transgenerational effects of ocean acidification on life history of marine three-spined stickleback (Gasterosteus aculeatus)

  • Franziska M. Schade
  • Catriona Clemmesen
  • K. Mathias Wegner
Original Paper

Abstract

Some studies have demonstrated that elevated CO2 concentrations in ocean waters negatively impact metabolism and development of marine fish. Particularly, early developmental stages are probably more susceptible to ocean acidification due to insufficient regulations of their acid-base balance. Transgenerational acclimation can be an important mechanism to mediate impacts of increased CO2 on marine species, yet very little is known about the potential of parental effects in teleosts. Therefore, transgenerational effects were investigated on life history in juvenile three-spined sticklebacks Gasterosteus aculeatus by acclimating parents (collected in April 2012, 55°03′N, 8°44′E) and offspring to ambient (~400 µatm) and elevated (~1,000 µatm) CO2 levels and measured parental fecundity as well as offspring survival, growth and otolith characteristics. Exposure to elevated CO2 concentrations led to an increase in clutch size in adults as well as increased juvenile survival and growth rates between 60 and 90 days post-hatch and enlarged otolith areas compared with fish from ambient CO2 concentrations. Moreover, transgenerational effects were observed in reduced survival and body size 30 days post-hatch as well as in enlarged otoliths at the end of the experiment, when fathers or both parents were acclimated to the high-CO2 environment. These results may suggest that elevated CO2 concentrations had rather positive effects on life-history traits of three-spined sticklebacks, but that parental acclimation can modify these effects without improving offspring fitness. Although the mechanistic basis of such transgenerational acclimation remains unclear, selective gradients within generations seem to determine the direction of transgenerational effects.

Notes

Acknowledgments

We would like to thank the crew from the RV “MYA” for help with fishing in the Sylt-Rømø-Bight, Lars Gutow for giving a comprehensive introduction to water chemistry and all members of the Coastal Ecological Genetics group for feeding fish on weekends. The study was funded by DFG Emmy Noether Programme Grant WE 4614/1-1.

References

  1. Angilletta MJ, Wilson RS, Navas CA, James RS (2003) Tradeoffs and the evolution of thermal reaction norms. Trends Ecol Evol 18:234–240. doi:10.1016/s0169-5347(03)00087-9 CrossRefGoogle Scholar
  2. Barrett RDH, Paccard A, Healy TM, Bergek S, Schulte PM, Schluter D, Rogers SM (2011) Rapid evolution of cold tolerance in stickleback. Proc R Soc B Biol Sci 278:233–238. doi:10.1098/rspb.2010.0923 CrossRefGoogle Scholar
  3. Baumann H, Talmage SC, Gobler CJ (2012) Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nat Clim Chang 2:38–41. doi:10.1038/nclimate1291 CrossRefGoogle Scholar
  4. Bergenius MAJ, Meekan MG, Robertson DR, McCormick MI (2002) Larval growth predicts the recruitment success of a coral reef fish. Oecologia 131:521–525. doi:10.1007/s00442-002-0918-4 CrossRefGoogle Scholar
  5. Bignami S, Enochs IC, Manzello DP, Sponaugle S, Cowen RK (2013) Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function. Proc Natl Acad Sci USA 110:7366–7370. doi:10.1073/pnas.1301365110 CrossRefGoogle Scholar
  6. Bonduriansky R, Day T (2009) Nongenetic inheritance and its evolutionary implications. Annu Rev Ecol Evol 40:103–125. doi:10.1146/annurev.ecolsys.39.110707.173441 CrossRefGoogle Scholar
  7. Brauner CJ (2008) Acid-base balance. In: Finn RN, Kapoor BG (eds) Fish larval physiology. Science Publisher, Inc., EnfieldGoogle Scholar
  8. Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110. doi:10.1029/2004jc002671
  9. Checkley DM Jr, Dickson AG, Takahashi M, Radich JA, Eisenkolb N, Asch R (2009) Elevated CO2 enhances otolith growth in young fish. Science 324:1683. doi:10.1126/science.1169806 CrossRefGoogle Scholar
  10. Claiborne JB, Heisler N (1984) Acid-base regulation and ion transfers in the carp (Cyprinus carpio) during and after exposure to environmental hypercapnia. J Exp Biol 108:25–43Google Scholar
  11. Claiborne JB, Edwards SL, Morrison-Shetlar AI (2002) Acid-base regulation in fishes: cellular and molecular mechanisms. J Exp Zool 108:302–319. doi:10.1002/jez.10125 CrossRefGoogle Scholar
  12. Constantini D, Metcalfe NB, Monaghan P (2010) Ecological processes in a hormetic framework. Ecol Lett 13:1435–1447. doi:10.1111/j.1461-0248.2010.01531.x CrossRefGoogle Scholar
  13. Denman K, Christian JR, Steiner N, Pörtner HO, Nojiri Y (2011) Potential impacts of future ocean acidification on marine ecosystems and fisheries: current knowledge and recommendations for future research. ICES J Mar Sci 68:1019–1029. doi:10.1093/icesjms/fsr074 CrossRefGoogle Scholar
  14. Dickson AG, Millero FJ (1987) A comparison of the equilibrium-constants for the dissociation of carbonic-acid in seawater media. Deep Sea Res Pt I 34:1733–1743. doi:10.1016/0198-0149(87)90021-5 CrossRefGoogle Scholar
  15. Donelson JM, Munday PL, McCormick MI, Pitcher CR (2012) Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat Clim Chang 2:30–32. doi:10.1038/nclimate1323 CrossRefGoogle Scholar
  16. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192. doi:10.1146/annurev.marine.010908.163834 CrossRefGoogle Scholar
  17. Dupont S, Thorndyke M (2012) Relationship between CO2-driven changes in extracellular acid-base balance and cellular immune response in two polar echinoderm species. J Exp Mar Biol Ecol 424:32–37. doi:10.1016/j.jembe.2012.05.007 CrossRefGoogle Scholar
  18. Dupont S, Lundve B, Thorndyke M (2010) Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus. J Exp Zool B Mol Dev Evol 314:382–389. doi:10.1002/jezmde.21342 CrossRefGoogle Scholar
  19. Dupont S, Dorey N, Stumpp M, Melzner F, Thorndyke M (2012) Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Mar Biol 160:1835–1843. doi:10.1007/s00227-012-1921-x CrossRefGoogle Scholar
  20. Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177. doi:10.1152/physrev.00050.2003 CrossRefGoogle Scholar
  21. Fauvel C, Savoye O, Dreanno C, Cosson J, Suquet M (1999) Characteristics of sperm of captive seabass in relation to its fertilization potential. J Fish Biol 54:356–369. doi:10.1006/jfbi.1998.0873 CrossRefGoogle Scholar
  22. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366. doi:10.1126/science.1097329 CrossRefGoogle Scholar
  23. Ferrari MCO, McCormick MI, Munday PL, Meekan MG, Dixson DL, Lonnstedt O, Chivers DP (2011) Putting prey and predator into the CO2 equation: qualitative and quantitative effects of ocean acidification on predator-prey interactions. Ecol Lett 14:1143–1148. doi:10.1111/j.1461-0248.2011.01683.x CrossRefGoogle Scholar
  24. Franke A, Clemmesen C (2011) Effect of ocean acidification on early life stages of Atlantic herring (Clupea harengus L.). Biogeosciences 8:3697–3707. doi:10.5194/bg-8-3697-2011 CrossRefGoogle Scholar
  25. Frommel AY, Stiebens V, Clemmesen C, Havenhand J (2010) Effect of ocean acidification on marine fish sperm (Baltic cod: Gadus morhua). Biogeosciences 7:3915–3919. doi:10.5194/bg-7-3915-2010 CrossRefGoogle Scholar
  26. Frommel AY, Maneja R, Lowe D, Malzahn AM, Geffen AJ, Folkvord A, Piatkowski U, Reusch TBH, Clemmesen C (2012a) Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nat Clim Chang 2:42–46. doi:10.1038/nclimate1324 CrossRefGoogle Scholar
  27. Frommel AY, Schubert A, Piatkowski U, Clemmesen C (2012b) Egg and early larval stages of Baltic cod, Gadus morhua, are robust to high levels of ocean acidification. Mar Biol 160:1825–1834. doi:10.1007/s00227-011-1876-3 CrossRefGoogle Scholar
  28. Gagliano M, Depczynski M, Simpson SD, Moore JAY (2008) Dispersal without errors: symmetrical ears tune into the right frequency for survival. Proc R Soc B Biol Sci 275:527–534. doi:10.1098/rspb.2007.1388 CrossRefGoogle Scholar
  29. Hopkins K, Moss BR, Gill AB (2011) Increased ambient temperature alters the parental care behaviour and reproductive success of the three-spined stickleback (Gasterosteus aculeatus). Env Biol Fishes 90:121–129. doi:10.1007/s10641-010-9724-8 CrossRefGoogle Scholar
  30. Inaba K, Dreanno C, Cosson J (2003) Control of flatfish sperm motility by CO2 and carbonic anhydrase. Cell Motil Cytoskeleton 55:174–187. doi:10.1002/cm.10119 CrossRefGoogle Scholar
  31. IPCC (2007) Intergovernmental panel on climate change 2007: synthesis report. IPCC, GenevaGoogle Scholar
  32. Ishimatsu A, Hayashi M, Lee KS, Kikkawa T, Kita J (2005) Physiological effects on fishes in a high-CO2 world. J Geophys Res 110:1978–2012. doi:10.1029/2004jc002564 Google Scholar
  33. Ishimatsu A, Hayashi M, Kikkawa T (2008) Fishes in high-CO2, acidified oceans. Mar Ecol Prog Ser 373:295–302. doi:10.3354/meps07823 CrossRefGoogle Scholar
  34. Jones JW, Hynes HBN (1950) The age and growth of Gasterosteus aculeatus, Pygosteus pungitius and Spinachia vulgaris, as shown by their otoliths. J Anim Ecol 19:59–73. doi:10.2307/1571 CrossRefGoogle Scholar
  35. Jordan CM, Garside ET (1972) Upper lethal temperatures of threespine stickleback, Gasterosteus aculeatus (L), in relation to thermal and osmotic acclimation, ambient salinity and size. Can J Zool 50:1405–1411. doi:10.1139/z72-189 CrossRefGoogle Scholar
  36. Jutfelt F, de Souza KB, Vuylsteke A, Sturve J (2013) Behavioural disturbances in a temperate fish exposed to sustained high CO2 levels. PLoS One 8:1–6. doi:10.1371/journal.pone.0065825 CrossRefGoogle Scholar
  37. Kirkpatrick M, Lande R (1989) The evolution of maternal characters. Evolution 43:485–503. doi:10.2307/2409054 CrossRefGoogle Scholar
  38. Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434. doi:10.1111/j.1461-0248.2010.01518.x CrossRefGoogle Scholar
  39. Leclercq N, Gattuso JP, Jaubert J (2002) Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure. Limnol Oceanogr 47:558–564CrossRefGoogle Scholar
  40. Lefebure R, Larsson S, Bystrom P (2011) A temperature-dependent growth model for the three-spined stickleback Gasterosteus aculeatus. J Fish Biol 7:1815–1827. doi:10.1111/j.1095-8649.2011.03121.x CrossRefGoogle Scholar
  41. Maneja RH, Frommel AY, Geffen AJ, Folkvord A, Piatkowski U, Chang MY, Clemmesen C (2013) Effects of ocean acidification on the calcification of otoliths of larval Atlantic cod Gadus morhua. Mar Ecol Prog Ser 477:251–258. doi:10.3354/meps10146 CrossRefGoogle Scholar
  42. Meekan MG, Carleton JH, McKinnon AD, Flynn K, Furnas M (2003) What determines the growth of tropical reef fish larvae in the plankton: food or temperature? Mar Ecol Prog Ser 256:193–204. doi:10.3354/meps256193 CrossRefGoogle Scholar
  43. Mehrbach C, Culberso CH, Hawley JE, Pytkowic RM (1973) Measurement of apparent dissociation-constants of carbonic-acid in seawater at atmospheric-pressure. Limnol Oceanogr 18:897–907CrossRefGoogle Scholar
  44. Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner HO (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331. doi:10.5194/bg-6-2313-2009 CrossRefGoogle Scholar
  45. Miller GM, Watson S-A, Donelson JM, McCormick MI, Munday PL (2012) Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nat Clim Chang 2:858–861. doi:10.1038/nclimate1599 CrossRefGoogle Scholar
  46. Miller GM, Watson S-A, McCormick MI, Munday PL (2013) Increased CO2 stimulates reproduction in a coral reef fish. Glob Chang Biol 19:3037–3045. doi:10.1111/gcb.12259 CrossRefGoogle Scholar
  47. Moran R, Harvey I, Moss B, Feuchtmayr H, Hatton K, Heyes T, Atkinson D (2010) Influence of simulated climate change and eutrophication on three-spined stickleback populations: a large scale mesocosm experiment. Freshw Biol 55:315–325. doi:10.1111/j.1365-2427.2009.02276.x CrossRefGoogle Scholar
  48. Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina GV, Doving KB (2009a) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci USA 106:1848–1852. doi:10.1073/pnas.0809996106 CrossRefGoogle Scholar
  49. Munday PL, Donelson JM, Dixson DL, Endo GGK (2009b) Effects of ocean acidification on the early life history of a tropical marine fish. Proc R Soc B Biol Sci 276:3275–3283. doi:10.1098/rspb.2009.0784 CrossRefGoogle Scholar
  50. Munday PL, Hernaman V, Dixson DL, Thorrold SR (2011) Effect of ocean acidification on otolith development in larvae of a tropical marine fish. Biogeosciences 8:1631–1641. doi:10.5194/bg-8-1631-2011 CrossRefGoogle Scholar
  51. Munday PL, McCormick MI, Nilsson GE (2012) Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future? J Exp Biol 215:3865–3873. doi:10.1242/jeb.074765 CrossRefGoogle Scholar
  52. Munday PL, Warner RR, Monro K, Pandolfi JM, Marshall DJ (2013) Predicting evolutionary responses to climate change in the sea. Ecol Lett 16:1488–1500. doi:10.1111/ele.12185 CrossRefGoogle Scholar
  53. Östlund-Nilsson S, Mayer I, Huntingford FA (2006) Biology of the three-spined stickleback. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  54. Parker LM, Ross PM, O’Connor WA, Borysko L, Raftos DA, Pörtner H-O (2012) Adult exposure influences offspring response to ocean acidification in oysters. Glob Chang Biol 18:82–92. doi:10.1111/j.1365-2486.2011.02520.x CrossRefGoogle Scholar
  55. Peters GP, Marland G, Le Quere C, Boden T, Canadell JG, Raupach MR (2012) Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat Clim Chang 2:2–4. doi:10.1038/nclimate1332 CrossRefGoogle Scholar
  56. Popper AN, Ramcharitar J, Campana SE (2005) Why otoliths? Insights from inner ear physiology and fisheries biology. Mar Freshw Res 56:497–504. doi:10.1071/mf04267 CrossRefGoogle Scholar
  57. Pörtner HO, Langenbuch M, Reipschlager A (2004) Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. J Oceanogr 60:705–718. doi:10.1007/s10872-004-5763-0 CrossRefGoogle Scholar
  58. Pörtner HO, Langenbuch M, Michaelidis B (2005) Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from Earth history to global change. J Geophys Res 110:1978–2012. doi:10.1029/2004jc002561 Google Scholar
  59. Pottinger TG, Carrick TR, Yeomans WE (2002) The three-spined stickleback as an environmental sentinel: effects of stressors on whole-body physiological indices. J Fish Biol 61:207–229. doi:10.1006/jfbi.2002.2034 CrossRefGoogle Scholar
  60. R Development Core Team R (2008) R: a language and environment for statistical computing R foundation for statistical computing. R Development Core Team, ViennaGoogle Scholar
  61. Rasband W (1997–2012) ImageJ. US National Institutes of Health, Bethesda, MD. http://imagej.nih.gov/ij/
  62. Robbins LL, Hansen ME, Kleypas JA, Meylan SC (2010) CO2calc: a user-friendly carbon calculator for windows, Mac OS X and iOS (iPhone). US Geological Survey, USA. http://pubs.usgs.gov/of/2010/1280/
  63. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371. doi:10.1126/science.1097403 CrossRefGoogle Scholar
  64. Salinas S, Munch SB (2012) Thermal legacies: transgenerational effects of temperature on growth in a vertebrate. Ecol Lett 15:159–163. doi:10.1111/j.1461-0248.2011.01721.x CrossRefGoogle Scholar
  65. Salinas S, Brown S, Mangel M, Munch S (2013) Non-genetic inheritance and changing environments. Non Genet Inherit 1:38–50. doi:10.2478/ngi-2013-0005 CrossRefGoogle Scholar
  66. Schreck CB (2010) Stress and fish reproduction: the roles of allostasis and hormesis. Gen Comp Endocrinol 165:549–556. doi:10.1016/j.ygcen.2009.07.004 CrossRefGoogle Scholar
  67. Searcy SP, Sponaugle S (2000) Variable larval growth in a coral reef fish. Mar Ecol Prog Ser 206:213–226. doi:10.3354/meps206213 CrossRefGoogle Scholar
  68. Skelly DK, Joseph LN, Possingham HP, Freidenburg LK, Farrugia TJ, Kinnison MT, Hendry AP (2007) Evolutionary responses to climate change. Conserv Biol 21:1353–1355. doi:10.1111/j.1523-1739.2007.00764.x CrossRefGoogle Scholar
  69. Sundin J, Rosenqvist G, Berglund A (2013) Altered oceanic pH impairs mating propensity in a pipefish. Ethology 119:86–93. doi:10.1111/eth.12039 CrossRefGoogle Scholar
  70. Wittmann AC, Pörtner HO (2013) Sensitivities of extant animal taxa to ocean acidification. Nat Clim Chang 3:995–1001. doi:10.1038/NCLIMATE1982 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Franziska M. Schade
    • 1
  • Catriona Clemmesen
    • 2
  • K. Mathias Wegner
    • 1
  1. 1.Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchListGermany
  2. 2.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany

Personalised recommendations