Advertisement

Marine Biology

, Volume 161, Issue 5, pp 1195–1206 | Cite as

Differences in diet composition and foraging patterns between sexes of the Magellanic penguin (Spheniscus magellanicus) during the non-breeding period as revealed by δ13C and δ15N values in feathers and bone

  • L. Silva
  • F. Saporit
  • D. Vales
  • M. Tavares
  • P. Gandini
  • E. A. Crespo
  • L. Cardona
Original Paper

Abstract

In diving seabirds, sexual dimorphism in size often results in sex-related differences of foraging patterns. Previous research on Magellanic penguins, conducted during the breeding season, failed to reveal consistent differences between the sexes on foraging behavior, despite sexual dimorphism. In this paper, we tested the hypothesis that male and female Magellanic penguins differ in diet and foraging patterns during the non-breeding period when the constraints imposed by chick rearing activities vanish. We used stable isotope ratios of carbon and nitrogen in feather and bone to characterize the diet and foraging patterns of male and female penguins in the South Atlantic at the beginning of the 2009–2010 and 2010–2011 post-breeding seasons (feathers) and over several consecutive breeding and migratory seasons (bone). The mean δ13C and δ15N values of feathers showed no differences between the sexes in any of the three regions considered or in the diet composition between the sexes from identical breeding regions; however, Bayesian ellipses showed a higher isotopic niche width in males at the beginning of the post-breeding season. Stable isotope ratios in bone revealed the enrichment of males with δ13C compared with females across the three regions considered. Furthermore, the Bayesian ellipses were larger for males and encompassed those of females in two of the three regions analyzed. These results suggest a differential use of winter resources between the sexes, with males typically showing a larger diversity of foraging/migratory strategies. The results also show that dietary differences between male and female Magellanic penguins may occur once the constraints imposed by chick rearing activities cease at the beginning of the post-breeding season.

Keywords

Stable Isotope Analysis Stable Isotope Ratio Isotopic Niche Chick Rear Period Magellanic Penguin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was funded by Fundación BBVA through the project “Efectos de la explotación humana sobre depredadores apicales y la estructura de la red trófica del Mar Argentino durante los últimos 6.000 años” (BIOCON 08-194/09 2009-2011) and Agencia Nacional de Promoción Científica y Tecnológica (PICT No. 2110). At the time, this manuscript was written, L. S. and D.V. were supported by a Doctoral Fellowship Program from the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), and F.S. was supported by a Fellowship from Ministerio de Ciencia e Innovación (Spain). We also thank the respective Conservation Agencies from the provinces of Rio Negro, Chubut, Santa Cruz and Rio Grande do Sul for the permits to work and collect samples in their protected areas, and the Centro Nacional Patagónico (CENPAT-CONICET) for institutional and logistical support. Finally, L.S. wants to thanks especially to the public and free education system of Argentina.

References

  1. Adams NJ, Brown CR (1990) Energetics of molt in penguins. In: Davis LS, Darby JT (eds) Penguin biology. Academic Press, San Diego, pp 297–315Google Scholar
  2. Bearhop S, Waldron S, Votier SC, Furness RW (2002) Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiol Biochem Zool 75(5):451–458CrossRefGoogle Scholar
  3. Bearhop S, Phillips RA, McGill R, Cherel Y, Dawson DA, Croxall JP (2006) Stable isotopes indicate sex-specific and long-term individual foraging specialization in diving seabirds. Mar Ecol Prog Ser 311:157–164CrossRefGoogle Scholar
  4. Bertellotti M, Tella J, Godoy J, Blanco G, Forero M, Donázar J, Ceballos O (2002) Determining sex of Magellanic penguins using molecular procedures and discriminant functions. Waterbirds 25:479–484CrossRefGoogle Scholar
  5. Bligh E, Dyer W (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefGoogle Scholar
  6. Boersma PD, Rebstock GA (2009) Foraging distance affects reproductive success in Magellanic penguins. Mar Ecol Prog Ser 375:263–275CrossRefGoogle Scholar
  7. Boersma PD, Rebstock G, Frere E, Moore SE (2009) Following the fish: penguins and productivity in the South Atlantic. Ecol Monogr 79(1):59–76CrossRefGoogle Scholar
  8. Bugoni L, McGill RA, Furness RW (2010) The importance of pelagic longline fishery discards for a seabird community determined through stable isotope analysis. J Exp Mar Biol Ecol 391:190–200CrossRefGoogle Scholar
  9. Bunn SE, Loneragan NR, Kempster MA (1995) Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: implications for food-web studies using multiple stable isotopes. Limnol Oceanogr 40:622–625CrossRefGoogle Scholar
  10. Cherel Y, Hobson KA, Weimerskirch H (2000) Using stable-isotope analysis of feathers to distinguish moulting and breeding origins of seabirds. Oecologia 122:155–162 CrossRefGoogle Scholar
  11. Cherel Y, Pütz K,  Hobson KA (2002) Summer diet of king penguins (Aptenodytes patagonicus) at the Falkland Islands, southern Atlantic Ocean. Polar Biol 25(12):898–906Google Scholar
  12. Cherel Y, Hobson KA, Bailleul F, Groscolas R (2005) Nutrition, physiology, and stable isotopes: new information from fasting and molting penguins. Ecology 86(11):2881–2888CrossRefGoogle Scholar
  13. Clarke J, Manly B, Kerry K, Gardner H, Franchi E, Corsolini S, Focardi S (1998) Sex differences in Adélie penguin foraging strategies. Polar Biol 20:248–258CrossRefGoogle Scholar
  14. DeNiro MJ, Epstein S (1977) Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197:261–263CrossRefGoogle Scholar
  15. Drago M, Cardona L, Crespo EA, Aguilar A (2009a) Ontogenic dietary changes in South American sea lions. J Zool 279:251–261CrossRefGoogle Scholar
  16. Drago M, Crespo EA, Aguilar A, Cardona L, García N, Dans SL, Goodall N (2009b) Historic diet change of the South American sea lion in Patagonia as revealed by isotopic analysis. Mar Ecol Prog Ser 384:273–286CrossRefGoogle Scholar
  17. Fonseca VS, Petry MV, Jost AH (2001) Diet of the Magellanic penguin on the coast of Rio Grande do Sul, Brasil. Waterbirds 24:290–293CrossRefGoogle Scholar
  18. Forero MG, Tella JL, Donázar JA, Blanco G, Bertellotti M, Ceballos O (2001) Phenotypic assortative mating and within-pair sexual dimorphism and its influence on breeding success and offspring quality in Magellanic penguins. Can J Zool 79:1414–1422CrossRefGoogle Scholar
  19. Forero MG, Hobson KA, Bortolotti GR, Donázar JA, Bertellotti M, Blanco G (2002) Food resource utilisation by the Magellanic penguin evaluated through stable-isotope analysis: segregation by sex and age and influence on offspring quality. Mar Ecol Prog Ser 234:289–299CrossRefGoogle Scholar
  20. Frere E, Gandini PA, Lichtschein V (1996) Variación latitudinal en la dieta del Pingüino de Magallanes (Spheniscus magellanicus) en la costa Patagónica, Argentina. Ornitol Neotrop 7:35–41Google Scholar
  21. Gandini PA, Frere E, Holik TM (1992) Implicancias de las diferencias en el tamaño corporal entre colonias para el uso de medidas morfométricas como método de sexado en Spheniscus magellanicus. Hornero 13:211–213Google Scholar
  22. González-Solís J, Smyrli M, Militão T, Gremillet D, Tveraa T, Phillips RA, Boulinier T (2011) Combining stable isotope analyses and geolocation to reveal kittiwake migration. Mar Ecol Prog Ser 435:251–261CrossRefGoogle Scholar
  23. Hobson KA, Clark RG (1992a) Assessing avian diets using stable isotopes I: turnover of 13 C in tissues. Condor 94:181–188CrossRefGoogle Scholar
  24. Hobson KA, Clark RG (1992b) Assessing avian diets using stable isotopes II: factors influencing diet-tissue fractionation. Condor 94:189–197CrossRefGoogle Scholar
  25. Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80(3):595–602CrossRefGoogle Scholar
  26. Lorrain A, Savoye N, Chauvaud L, Paulet Y, Naulet N (2003) Decarbonation and preservation method for the analysis of organic C and N contents and stable isotope ratios of low-carbonated suspended particulate material. Anal Chim Acta 491:125–133CrossRefGoogle Scholar
  27. Mäder A, Sander M, Casa Jr G (2010) Pinguins-de-magalhães arribados na costa do Rio Grande do Sul: composição da dieta e ecologia alimentar. III Congresso Brasileiro de Oceanografia Rio GrandeGoogle Scholar
  28. Mizutani H, Fukuda M, Kabaya Y (1992) 13C and 15N enrichment factors of feathers of 11 species of adult birds. Ecology 73:1391–1395CrossRefGoogle Scholar
  29. Newsome SD, Etnier MA, Aurioles-Gamboa D, Koch PL (2006) Using carbon and nitrogen isotope values to investigate maternal strategies in northeast Pacific otariids. Mar Mammal Sci 22:556–572CrossRefGoogle Scholar
  30. Ogawa N, Ogura N (1997) Dynamics of particulate organic matter in the Tamagawa Estuary and inner Tokyo Bay. Estuar Coast Shelf Sci 44:263–273CrossRefGoogle Scholar
  31. Parnell A, Inger R, Bearhop S, Jackson AL (2008) SIAR: stable isotope analysis in R. http://cran.r-project.org/web/packages/siar/index.html
  32. Pinnegar JK, Polunin NVC (1999) Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Funct Ecol 13:225–231CrossRefGoogle Scholar
  33. Pinto MBLC, Siciliano S, Di beneditto PM (2007) Stomach contents of the Magellanic penguin Spheniscus magellanicus from the northern distribution limit on the Atlantic coast of Brazil. Mar Ornithol 35:77–78Google Scholar
  34. Pütz K, Ingham RJ, Smith G (2000) Satellite tracking of the winter migration of Magellanic penguins Spheniscus magellanicus breeding in the Falkland Islands. Ibis 142:614–622CrossRefGoogle Scholar
  35. Pütz K, Ingham RJ, Smith JG (2002) Foraging movements of Magellanic penguins Spheniscus magellanicus during the breeding season in the Falkland Islands. Aquatic Conserv Mar Freshw Ecosyst 12:75–87CrossRefGoogle Scholar
  36. Pütz K, Schiavini A, Raya Rey A, Lüth BH (2007) Winter migration of magellanic penguins (Spheniscus magellanicus) from the southernmost distributional range. Mar Biol 152:1227–1235CrossRefGoogle Scholar
  37. Quillfeldt P, McGill R, Furness RW (2005) Diet and foraging areas of Southern Ocean seabirds and their prey inferred from stable isotopes: review and case study of Wilson’s storm-petrel. Mar Ecol Prog Ser 295:295–304. doi: 10.3354/meps295295 CrossRefGoogle Scholar
  38. Raya Rey A, Pütz K, Scioscia G, Lüthi B, Schiavini A (2012) Sexual differences in the foraging behaviour of Magellanic Penguins related to stage of breeding. Emu 112:90–96CrossRefGoogle Scholar
  39. Sala JE, Wilson RP, Frere E, Quintana F (2012) Foraging effort in Magellanic penguins in coastal Patagonia, Argentina. Mar Ecol Prog Ser 464:273–287CrossRefGoogle Scholar
  40. Schiavini A, Yorio P, Gandini P, Raya Rey A, Boersma PD (2005) Los Pingüinos de las costas Argentinas: estado poblacional y conservación. Hornero 20:5–23Google Scholar
  41. Schreer JF, Kovacs KM (1997) Allometry of diving capacity in air-breathing vertebrates. Can J Zool 75:339–358CrossRefGoogle Scholar
  42. Scolaro J (1978) El Pingüino de Magallanes (Spheniscus magellanicus) IV. Notas biológicas y de comportamiento. Serie Científica. Publicaciones ocasionales del Instituto de Biología Animal. Serie científica 10:1–6Google Scholar
  43. Scolaro J (1984) Revisión sobre la biología de la reproducción del pingüino de Magallanes (Spheniscus magellanicus) El ciclo biológico anual. Contribución Centro Nacional Patagónico 91:1–26Google Scholar
  44. Stokes DL, Boersma PD (1999) Where breeding Magellanic penguins Spheniscus magellanicus forage: satellite telemetry results and their implications for penguin conservation. Mar Ornithol 27:59–65Google Scholar
  45. Stokes DL, Boersma PD, Davis LD (1998) Satellite tracking of Magellanic penguins migration. Condor 100:376–381CrossRefGoogle Scholar
  46. Syväranta J, Lensu A, Marjomäki TJ, Oksanen S, Jones RI (2013) An empirical evaluation of the utility of convex hull and standard ellipse areas for assessing population niche widths from stable isotope data. PLoS One 8(2):e56094. doi: 10.1371/journal.pone.0056094 CrossRefGoogle Scholar
  47. Tieszen LL, Boutton TW, Tesdahl KG, Slade NA (1983) Fractionation and turnover of stable carbon isotope in animal tissue: implications for δ13C analysis of diet. Oecologia 57:32–37CrossRefGoogle Scholar
  48. Walker B, Boersma P (2003) Diving behavior of Magellanic penguins (Spheniscus magellanicus) at Punta Tombo, Argentina. Can J Zool 81:1471–1483. doi: 10.1139/z03-142 CrossRefGoogle Scholar
  49. Watanuki Y, Burger AE (1999) Body mass and dive duration in alcids and penguins. Can J Zool 77:1838–1842CrossRefGoogle Scholar
  50. Williams TD (1995) The penguins. Oxford University Press, OxfordGoogle Scholar
  51. Wilson RP (2003) Penguins predict their performance. Mar Ecol Prog Ser 249:305–310CrossRefGoogle Scholar
  52. Wilson RP, Scolaro JA, Peters G, Laurenti S, Kierspel M, Gallelli M, Upton J (1995) Foraging areas of Magellanic penguins Spheniscus magellanicus breeding at San Lorenzo, Argentina, during the incubation period. Mar Ecol Prog Ser 1299:1–6CrossRefGoogle Scholar
  53. Wilson RP, Scolaro JA, Grémillet D, Kierspel MAM, Laurenti S, Upton J, Gallelli H, Quintana F, Frere E, Müller G, Straten MT, Zimmer I (2005) How do Magellanic penguins cope with variability in their access to prey? Ecol Monogr 75:379–401CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • L. Silva
    • 1
  • F. Saporit
    • 2
  • D. Vales
    • 1
  • M. Tavares
    • 3
  • P. Gandini
    • 4
    • 5
  • E. A. Crespo
    • 1
  • L. Cardona
    • 2
  1. 1.Laboratorio de Mamíferos MarinosCentro Nacional Patagónico (CONICET)Puerto MadrynArgentina
  2. 2.Departamento de Biología Animal Institut de Recerca de la Biodiversitat, Faculty of BiologyUniversidad de BarcelonaBarcelonaSpain
  3. 3.Centro de Estudos Costeiros, Limnológicos e Marinhos, Instituto de BiociênciasUniversidade Federal do Rio Grande do Sul (CECLIMAR/IB/UFRGS) e Grupo de Estudos de Mamíferos Aquáticos do Rio Grande do Sul (GEMARS)ImbéBrazil
  4. 4.Centro de Investigaciones de Puerto DeseadoUniversidad Nacional de la Patagonia Austral-Unidad Académica Caleta OliviaPuerto DeseadoArgentina
  5. 5.Wildlife Conservation SocietyConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Puerto DeseadoArgentina

Personalised recommendations