Marine Biology

, Volume 160, Issue 11, pp 2841–2851 | Cite as

Microbial communities of the carapace, gut, and hemolymph of the Atlantic blue crab, Callinectes sapidus

  • Carrie E. Givens
  • Karen G. Burnett
  • Louis E. Burnett
  • James T. HollibaughEmail author
Original Paper


The Atlantic blue crab Callinectes sapidus is an important fisheries resource that is subject to mortality and morbidity from hemolymph infections. We used culture-independent methods based on the analysis of 16S rRNA genes to characterize and quantify the microflora from the carapace, gut, and hemolymph of C. sapidus with the goals of (1) characterizing the C. sapidus microbial assemblage and (2) identifying the reservoirs of potential pathogens associated with the crab. We found that the carapace, gut and hemolymph microflora have a core Proteobacteria community with contributions from other phyla including Bacteroidetes, Firmicutes, Spirochetes, and Tenericutes. Within this Proteobacteria core, γ-Proteobacteria, including the members of the Vibrionaceae that are closely related to potential pathogens, dominate. Bacteria closely related to hemolymph pathogens were found on the carapace, supporting the hypothesis that punctures, molting damage, or broken dactyls may be routes for hemolymph infections. These results provide some of the first data on the blue crab microbial assemblage obtained with culture-independent techniques and offer insights into the routes of infection and potential bacterial pathogens associated with blue crabs.


Vibrio Proteobacteria Bacteroidetes Blue Crab Alteromonas 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by NOAA Oceans and Human Health Initiative Traineeship S0867882 (CEG), National Science Foundation awards IOS-0725245 (KGB, LEB), and NSF OCE 12-37130 (JTH). This is publication #403 from the Grice Marine Laboratory. We thank Nat Johnson and Kristin Stover (Burnett Lab) for their assistance in collecting specimens. We thank two anonymous reviewers and the Editors for suggestions that have helped improved the quality and focus on this MS.

Supplementary material

227_2013_2275_MOESM1_ESM.docx (34 kb)
Supplementary material 1 (DOCX 35 kb)


  1. Austin B, Zhang X-H (2006) Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett Appl Microbiol 43:119–124CrossRefGoogle Scholar
  2. Bano N, DeRae Smith A, Bennett W, Vasquez L, Hollibaugh JT (2007) Dominance of Mycoplasma in the guts of the Long-Jawed Mudsucker, Gillichthys mirabilis, from five California salt marshes. Environ Microbiol 9:2636–2641. doi: 10.1111/j.1462-2920.2007.01381.x CrossRefGoogle Scholar
  3. Blake PA, Merson MH, Weaver RE, Hollis DG, Heublein PC (1979) Disease caused by a marine Vibrio. Clinical characteristics and epidemiology. New Engl J Med 300:1CrossRefGoogle Scholar
  4. Buchan A, Hadden M, Suzuki MT (2009) Development and application of quantitative-PCR tools for subgroups of the Roseobacter clade. Appl Environ Microbiol 75:7542–7547CrossRefGoogle Scholar
  5. Burnett LE, Holman JD, Jorgensen DD, Ikerd JL, Burnett KG (2006) Immune defense reduces respiratory fitness in Callinectes sapidus, the Atlantic blue crab. Biol Bull 211:50–57CrossRefGoogle Scholar
  6. CDC (1971) Vibrio parahaemolyticus gastroenteritis—Maryland. MMWR Morb Mortal Wkly Rep 20:356Google Scholar
  7. CDC (1976) Foodborne and waterborne outbreaks. Annual summary, 1975, AtlantaGoogle Scholar
  8. CDC (1999) Outbreak of Vibrio parahaemolyticus infection associated with eating raw oysters and clams harvested from Long Island Sound—Connecticut, New Jersey, and New York, 1998. MMWR Morb Mortal Wkly Rep 48:48–51Google Scholar
  9. CDC (2011) Vital signs: incidence and trends of infections with pathogens transmitted commonly through food—foodborne diseases active surveillance network, 10 U.S. sites, 1996–2010. MMWR Morb Mortal Wkly Rep 60:749–755Google Scholar
  10. Clarke K, Gorley R (2006) PRIMER v6. User manual/tutorial Plymouth routine in multivariate ecological research Plymouth Marine LaboratoryGoogle Scholar
  11. Cole J, Chai B, Farris R, Wang Q, Kulam-Syed-Mohideen A, McGarrell D, Bandela A, Cardenas E, Garrity G, Tiedje J (2007) The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35:D169–D172CrossRefGoogle Scholar
  12. Cole J, Wang Q, Cardenas E, Fish J, Chai B, Farris R, Kulam-Syed-Mohideen A, McGarrell D, Marsh T, Garrity G (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145CrossRefGoogle Scholar
  13. Colwell R, Wicks T, Tubiash H (1975) A comparative study of the bacterial flora of the hemolymph of Callinectes sapidus. Mar Fish Rev 37:29–33Google Scholar
  14. Cook DW, Lofton SR (1973) Chitinoclastic bacteria associated with shell disease in Penaeus shrimp and the blue crab (Callinectes sapidus). J Wildlife Dis 9:154–159Google Scholar
  15. Davis JW, Sizemore RK (1982) Incidence of Vibrio species associated with blue crabs (Callinectes sapidus) collected from Galveston Bay, Texas. Appl Environ Microbiol 43:1092–1097Google Scholar
  16. Faghri MA, Pennington CL, Cronholm LS, Atlas RM (1984) Bacteria associated with crabs from cold waters with emphasis on the occurrence of potential human pathogens. Appl Environ Microbiol 47:1054–1061Google Scholar
  17. Ferguson RL, Buckley E, Palumbo A (1984) Response of marine bacterioplankton to differential filtration and confinement. Appl Environ Microbiol 47:49–55Google Scholar
  18. Fouz B, Toranzo AE, Milán M, Amaro C (2000) Evidence that water transmits the disease caused by the fish pathogen Photobacterium damselae subsp. damselae. J Appl Microbiol 88:531–535. doi: 10.1046/j.1365-2672.2000.00992.x CrossRefGoogle Scholar
  19. Fraune S, Zimmer M (2008) Host-specificity of environmentally transmitted Mycoplasma-like isopod symbionts. Environ Microbiol 10:2497–2504. doi: 10.1111/j.1462-2920.2008.01672.x CrossRefGoogle Scholar
  20. Giebel J, Binder A, Kirchhoff H (1990) Isolation of Mycoplasma moatsii from the intestine of wild Norway rats (Rattus norvegicus). Vet Microbiol 22:23–29CrossRefGoogle Scholar
  21. Gomez-Gil B, Tron-Mayen L, Roque A, Turnbull JF, Inglis V, Guerra-Flores AL (1998) Species of Vibrio isolated from hepatopancreas, haemolymph and digestive tract of a population of healthy juvenile Penaeus vannamei. Aquaculture 163(1):1–9CrossRefGoogle Scholar
  22. Gomez-Gil B, Roque A, Lacuesta B, Rotllant G (2010) Diversity of vibrios in the haemolymph of the spider crab Maja brachydactyla. J Appl Microbiol 109:918–926CrossRefGoogle Scholar
  23. Gulmann LK (2004) Gut-associated microbial symbionts of the marsh fiddler crab, Uca pugnax. Massachusetts Institute of Technology, CambridgeCrossRefGoogle Scholar
  24. Harris JM (1993) The presence, nature, and role of gut microflora in aquatic invertebrates: a synthesis. Microb Ecol 25:195–231. doi: 10.1007/bf00171889 CrossRefGoogle Scholar
  25. Head IM, Saunders JR, Pickup RW (1998) Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb Ecol 35:1–21. doi: 10.1007/s002489900056 CrossRefGoogle Scholar
  26. Holben WE, Williams P, Saarinen M, Särkilahti LK, Apajalahti JHA (2002) Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasma phylotype in farmed and wild salmon. Microb Ecol 44:175–185. doi: 10.1007/s00248-002-1011-6 CrossRefGoogle Scholar
  27. Hongoh Y, Ohkuma M, Kudo T (2003) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol Ecol 44:231–242CrossRefGoogle Scholar
  28. Huang Z-B, Guo F, Zhao J, Li W-D, Ke C-H (2010) Molecular analysis of the intestinal bacterial flora in cage-cultured adult small abalone, Haliotis diversicolor. Aquac Res 41:e760–e769CrossRefGoogle Scholar
  29. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319CrossRefGoogle Scholar
  30. Huq A, Colwell RR, Rahman R, Ali A, Chowdhury M, Parveen S, Sack D, Russek-Cohen E (1990) Detection of Vibrio cholerae O1 in the aquatic environment by fluorescent-monoclonal antibody and culture methods. Appl Environ Microbiol 56:2370–2373Google Scholar
  31. Kalanetra KM, Bano N, Hollibaugh JT (2009) Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters. Environ Microbiol 11:2434–2445CrossRefGoogle Scholar
  32. Klappenbach JA, Saxman PR, Cole JR, Schmidt TM (2001) rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res 29:181–184CrossRefGoogle Scholar
  33. Krantz G, Colwell R, Lovelace E (1969) Vibrio parahaemolyticus from the blue crab Callinectes sapidus in Chesapeake Bay. Science 164:1286CrossRefGoogle Scholar
  34. Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Academic Press, Chichester, pp 115–175Google Scholar
  35. Lee ZMP, Bussema C III, Schmidt TM (2009) rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea. Nucleic Acids Res 37:D489–D493CrossRefGoogle Scholar
  36. Li K, Guan W, Wei G, Liu B, Xu J, Zhao L, Zhang Y (2007) Phylogenetic analysis of intestinal bacteria in the Chinese mitten crab (Eriocheir sinensis). J Appl Microbiol 103:675–682CrossRefGoogle Scholar
  37. Li S, Sun L, Wu H, Hu Z, Liu W, Li Y, Wen X (2012) The intestinal microbial diversity in mud crab (Scylla paramamosain) as determined by PCR-DGGE and clone library analysis. J Appl Microbiol 113:1341–1351CrossRefGoogle Scholar
  38. Meziti A, Ramette A, Mente E, Kormas KA (2010) Temporal shifts of the Norway lobster (Nephrops norvegicus) gut bacterial communities. FEMS Microbiol Ecol 74:472–484CrossRefGoogle Scholar
  39. Molenda JR, Johnson WG, Fishbein M, Wentz B, Mehlman IJ, Dadisman TA (1972) Vibrio parahaemolyticus gastroenteritis in Maryland: laboratory aspects. Appl Microbiol 24:444–448Google Scholar
  40. Noga E, Engel D, Arroll T, McKenna S, Davidian M (1994) Low serum antibacterial activity coincides with increased prevalence of shell disease in blue crabs Callinectes sapidus. Dis Aquat Org 19:121–128CrossRefGoogle Scholar
  41. Noga EJ, Smolowitz R, Khoo LH (2000) Pathology of shell disease in the blue crab, Callinectes sapidus Rathbun, (Decapoda: Portunidae). J Fish Dis 23:389–399. doi: 10.1046/j.1365-2761.2000.00249.x CrossRefGoogle Scholar
  42. Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson G, Solymos P, Stevens M, Wagner H (2009) vegan: Community Ecology Package. R package version 1.15-2Google Scholar
  43. Oxley APA, Shipton W, Owens L, McKay D (2002) Bacterial flora from the gut of the wild and cultured banana prawn, Penaeus merguiensis. J Appl Microbiol 93:214–223. doi: 10.1046/j.1365-2672.2002.01673.x CrossRefGoogle Scholar
  44. Phillips FA, Peeler JT (1972) Bacteriological survey of the blue crab industry. Appl Microbiol 24:958–966Google Scholar
  45. R Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  46. Roman M, Burnett LE, Burnett KG (unpublished data) The effect of the pathogenic bacterium Vibrio campbellii on fatigue in the Atlantic blue crab, Callinectes sapidus, during sustained exerciseGoogle Scholar
  47. Scholnick DA, Burnett KG, Burnett LE (2006) Impact of exposure to bacteria on metabolism in the penaeid shrimp Litopenaeus vannamei. Biol Bull 211:44–49CrossRefGoogle Scholar
  48. Sizemore R, Colwell R, Tubiash H, Lovelace T (1975) Bacterial flora of the hemolymph of the blue crab, Callinectes sapidus: numerical taxonomy. Appl Microbiol 29:393–399Google Scholar
  49. Stackebrandt E, Goebel B (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  50. Suzuki MT, Taylor LT, DeLong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microbiol 66(11):4605–4614CrossRefGoogle Scholar
  51. Tanaka R, Ootsubo M, Sawabe T, Ezura Y, Tajima K (2004) Biodiversity and in situ abundance of gut microflora of abalone (Haliotis discus hannai) determined by culture-independent techniques. Aquaculture 241(1–4):453–463. doi: 10.1016/j.aquaculture.2004.08.032 CrossRefGoogle Scholar
  52. Thibodeaux LK, Burnett KG, Burnett LE (2009) Energy metabolism and metabolic depression during exercise in Callinectes sapidus, the Atlantic blue crab: effects of the bacterial pathogen Vibrio campbellii. J Exp Biol 212:3428–3439CrossRefGoogle Scholar
  53. Thompson JR, Randa MA, Marcelino LA, Tomita-Mitchell A, Lim E, Polz MF (2004) Diversity and dynamics of a North Atlantic coastal Vibrio community. Appl Environ Microbiol 70:4103–4110CrossRefGoogle Scholar
  54. Thyssen A, Grisez L, Van Houdt R, Ollevier F (1998) Phenotypic characterization of the marine pathogen Photobacterium damselae subsp. piscicida. Int J Syst Bacteriol 48:1145–1151. doi: 10.1099/00207713-48-4-1145 CrossRefGoogle Scholar
  55. Tindall BJ, Rosselló-Mora R, Busse H-J, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266CrossRefGoogle Scholar
  56. Tubiash HS, Sizemore RK, Colwell RR (1975) Bacterial flora of the hemolymph of the blue crab, Callinectes sapidus: most probable numbers. Appl Microbiol 29:388–392Google Scholar
  57. Ward N, Steven B, Penn K, Methé B, Detrich W (2009) Characterization of the intestinal microbiota of two Antarctic notothenioid fish species. Extremophiles 13:679–685. doi: 10.1007/s00792-009-0252-4 CrossRefGoogle Scholar
  58. Welsh PC, Sizemore RK (1985) Incidence of bacteremia in stressed and unstressed populations of the blue crab, Callinectes sapidus. Appl Environ Microbiol 50:420–425Google Scholar
  59. Williams-Walls N (1968) Clostridium botulinum type F: isolation from crabs. Science 162:375–376CrossRefGoogle Scholar
  60. Wong H-C, Liu S-H, Ku L-W, Lee I, Wang T-K, Lee Y-S, Lee C-L, Kuo L-P, Shih DY-C (2000) Characterization of Vibrio parahaemolyticus isolates obtained from foodborne illness outbreaks during 1992 through 1995 in Taiwan. J Food Protect 63:900–906Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Carrie E. Givens
    • 1
  • Karen G. Burnett
    • 2
  • Louis E. Burnett
    • 2
  • James T. Hollibaugh
    • 1
    Email author
  1. 1.Department of Marine SciencesUniversity of GeorgiaAthensUSA
  2. 2.Grice Marine LaboratoryCollege of CharlestonCharlestonUSA

Personalised recommendations