Marine Biology

, Volume 160, Issue 9, pp 2413–2423 | Cite as

Reproductive dynamics of the sea urchin Paracentrotus lividus on the Galicia coast (NW Spain): effects of habitat and population density

  • Rosana OurénsEmail author
  • Luis Fernández
  • María Fernández-Boán
  • Inés Naya
  • Juan Freire
Original Paper


We studied the spatial variability in the size at first maturity and the reproductive cycle of Paracentrotus lividus in Galicia, contributing key information for the exploitation and management of this resource. The size at maturity varied between 20.4 (±1.2 SE) mm and 27.9 ± 1.2 mm and was smaller in areas of low population density where sea urchins do not form patches. Using a nonlinear model, we analysed the effect of depth, body size, sex and population density on the temporal pattern of the gonad index. The maximum and minimum indices were obtained at 4 m depth in the months before and after the spring spawning, respectively. The depth also affected the cycle phase, and the sea urchins at 4 m depth spawned 9.4 ± 3.0 days later than the sea urchins at 8 m depth and 20.5 ± 3.0 days later than those at 12 m depth. Moreover, the sea urchins living in patches showed a slight increase in gonad size as a consequence of the better-quality habitat. This shows that there is no intraspecific competition in this area despite the high population densities reached (18.5 kg m−2).


Reproductive Cycle Intraspecific Competition Fishing Ground Gonad Index Paracentrotus Lividus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by the Spanish Ministry of Education and Science and by the European Regional Development Fund (ERDF). The authors wish to thank the other members of the research team, especially G. Casal, N. Sánchez and M. J. Juan Jordá, for their collaboration in processing the samples, estimating SST data, and statistical advice.

Supplementary material

227_2013_2236_MOESM1_ESM.pdf (47 kb)
Supplementary material 1 (PDF 47 kb)
227_2013_2236_MOESM2_ESM.pdf (301 kb)
Supplementary material 2 (PDF 301 kb)


  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723CrossRefGoogle Scholar
  2. Alvarado J (2008) Seasonal occurrence and aggregation behavior of the sea urchin Astropyga pulvinata (Echinodermata: Echinoidea) in Bahía Culebra, Costa Rica. Pac Sci 62(4):579–592CrossRefGoogle Scholar
  3. Andrew NL, Agatsuma Y, Ballesteros E, Bazhin AG, Creaser EP, Barnes DKA, Botsford LW, Bradbury A, Campbell A, Dixon JD, Einarsson S, Gerring PK, Hebert K, Hunter M, Hur SB, Johnson CR, Juinio-Menez MA, Kalvass P, Miller RJ, Moreno CA, Palleiro JS, Rivas D, Robinson SML, Schroeter SC, Steneck RS, Vadas RL, Woodby DA, Xiaoqi Z (2002) Status and management of world sea urchin fisheries. Oceanogr Mar Biol Annu Rev 40:343–425Google Scholar
  4. Arafa S, Chouaibi M, Sadok S, El Abed A (2012) The Influence of season on the gonad index and biochemical composition of the sea urchin Paracentrotus lividus from the Golf of Tunis. Sci World J 815935:8. doi: 10.1100/2012/815935 Google Scholar
  5. Berec L, Angulo E, Courchamp F (2007) Multiple Allee effects and population management. Trends Ecol Evol 22(4):185–191CrossRefGoogle Scholar
  6. Boudouresque CF, Verlaque M (2007) Ecology of Paracentrotus lividus. In: Lawrence JM (Ed), Edible sea urchins: biology and ecology, 2nd edition, Elsevier. Dev Aquac Fish Sci 37:243–285Google Scholar
  7. Byrne M (1990) Annual reproductive cycles of the commercial sea urchin Paracentrotus lividus from an exposed intertidal and a sheltered subtidal habitat on the west coast of Ireland. Mar Biol 104:275–289CrossRefGoogle Scholar
  8. Casal G, Kutser T, Domínguez-Gómez JA, Sánchez-Carnero N, Freire J (2011) Mapping benthic macroalgal communities in the coastal zone using CHRIS-Proba mode 2 images. Estuar Coast Shelf Sci 94(3):281–290CrossRefGoogle Scholar
  9. Catoira JL (1995) Spatial and temporal evolution of the gonad index of the sea urchin Paracentrotus lividus (Lamarck) in Galicia, Spain. In: Emson R, Smith A, Campbell A (eds.), Echinoderm research 1995. A.A. Balkema, Rotterdam, pp 295–298Google Scholar
  10. Corgos A, Freire J (2006) Morphometric and gonad maturity in the spider crab Maja brachydactyla: a comparison of methods for estimating size at maturity in species with determinate growth. ICES J Mar Sci 63:851–859CrossRefGoogle Scholar
  11. Dix TG (1970) Biology of Evechinus chloroticus (Echinoidea: Echlnometridae) from different localities. 3. Reproduction. N Z J Mar Freshw Res 4:385–405CrossRefGoogle Scholar
  12. Ebert TA, Hernández JC, Russell MP (2012) Ocean conditions and bottom-up modifications of gonad development in the sea urchin Strongylocentrotus purpuratus over space and time. Mar Ecol Prog Ser 467:147–166CrossRefGoogle Scholar
  13. Freeman SM (2003) Size-dependent distribution, abundance and diurnal rhythmicity patterns in the short-spined sea urchin Anthocidaris crassispina. Est Coast Shelf Sci 58:703–713CrossRefGoogle Scholar
  14. Fuji A (1967) Ecological studies on the growth and food consumption of Japanese common littoral sea urchin, Strongylocentrotus intermedius (A. Agassiz). Memoirs of the Faculty of Fisheries, Hokkaido University, 15:1–160Google Scholar
  15. Garmendia JM, Menchaca I, Belzunce MJ, Franco J, Revilla M (2010) Seasonal variability in gonad development in the sea urchin (Paracentrotus lividus) on the Basque coast (Southeastern Bay of Biscay). Mar Pollut Bull 61:259–266CrossRefGoogle Scholar
  16. Garrabou J, Ballesteros E, Zabala M (2002) Structure and dynamics of North-western Mediterranean rocky benthic communities along a depth gradient. Est Coast Shelf Sci 55:493–508CrossRefGoogle Scholar
  17. González-Irusta J (2009) Contribución al conocimiento del erizo de mar Paracentrotus lividus (Lamarck, 1816) en el Mar Cantábrico: ciclo gonadal y dinámica de poblaciones. Dissertation, Universidad de CantabriaGoogle Scholar
  18. Guettaf M, San Martín GA (1995) Étude de la variabilité de l′indice gonadique de l′oursin comestible Paracentrotus lividus en Méditerraneé nord-occidentale. Vie Milieu 45(2):129–137Google Scholar
  19. Guettaf M, San Martín GA, Francour P (2000) Interpopulation variability of the reproductive cycle of Paracentrotus lividus (Echinodermata: Echinoidea) in the South-Western Mediterranean. Mar Biol 80:899–907Google Scholar
  20. Hagen NT, Jørgensen I, Egeland ES (2008) Sex-specific seasonal variation in the carotenoid content of sea urchin gonads. Aquat Biol 3:227–235CrossRefGoogle Scholar
  21. Hardin JW, Hilbe JM (2007) Generalized linear models and extensions, 2nd edition. Stata Press, 387 ppGoogle Scholar
  22. Haya de la Sierra D (1990) Biología y ecología de Paracentrotus lividus en la zona intermareal. Dissertation, Universidad de Oviedo, SpainGoogle Scholar
  23. Hernández JC, Clemente S, Brito A (2011) Effects of seasonality on the reproductive cycle of Diadema aff. antillarum in two contrasting habitats: implications for the establishment of a sea urchin fishery. Mar Biol 158:2603–2615CrossRefGoogle Scholar
  24. Keats DW, Steele DH, South GR (1984) Depth-dependent reproductive output of the green sea urchin, Strongylocentrotus droebachiensis (O.F.Müller), in relation to the nature and availability of food. J Exp Mar Biol Ecol 80:71–91CrossRefGoogle Scholar
  25. Kenner MC, Lares MT (1991) Size at first reproduction of the sea urchin Strongylocentrotus purpuratus in a central California kelp forest. Mar Ecol Prog Ser 76:303–306CrossRefGoogle Scholar
  26. Kramer A, Dennis B, Liebhold AM, Drake JM (2009) The evidence for Allee effects. Popul Ecol 51:341–354CrossRefGoogle Scholar
  27. Lawrence JM (2007) Edible sea urchins: use and life-history strategies. In: Lawrence JM (ed) Edible sea urchins: biology and ecology, 2nd edition, Elsevier. Dev Aquac Fish Sci 37: 1–9Google Scholar
  28. Levitan DR (1991) Influence of body size and population density on fertilization success and reproductive output in a free-spawning invertebrate. Biol Bull 181:261–268CrossRefGoogle Scholar
  29. Levitan DR, Sewell MA, Chia FS (1992) How distribution and abundance influence fertilization success in the sea urchin Strongylocentotus franciscanus. Ecol 73(1):248–254CrossRefGoogle Scholar
  30. Lozano J, Galera J, López S, Turon X, Palacín C, Morera G (1995) Biological cycles and recruitment of Paracentrotus lividus (Echinodermata: Echinoidea) in two contrasting habitats. Mar Ecol Prog Ser 122:179–191CrossRefGoogle Scholar
  31. McPherson BF (1968) Feeding and oxygen uptake of the tropical sea urchin Eucidaris tribuloides (Lamarck). Biol Bull 135:308–321CrossRefGoogle Scholar
  32. Micael J, Alves M, Costa A, Jones M (2009) Exploitation and conservation of echinoderms. Oceanogr Mar Biol Annu Rev 47:191–208Google Scholar
  33. Montero-Torreiro MF, García-Martínez P (2003) Seasonal changes in the biochemical composition of body components of the sea urchin, Paracentrotus lividus, in Lorbé (Galicia, north-western Spain). J Mar Biol Ass UK 83:575–581CrossRefGoogle Scholar
  34. Orensanz JM, Jamieson GS (1998) The assessment and management of spatially structured stocks: an overview of the North Pacific Symposium on Invertebrate Stock assessment and management. In: Jamieson GS, Campbell A (eds) Proceedings of the North Pacific Symposium on Invertebrate stock assessment and management. Can Spec Publ Fish Aquat Sci 125: 441–459Google Scholar
  35. Otero-Schmitt J, Pérez-Cirera J (2002) Infralittoral benthic biocoenosis from Northern Ría de Muros, Atlantic Coast of Northwest Spain. Bot Mar 45:93–122CrossRefGoogle Scholar
  36. Ouréns R, Fernández L, Freire J (2011) Geographic, population, and seasonal patterns in the reproductive parameters of the sea urchin Paracentrotus lividus. Mar Biol 158:793–804CrossRefGoogle Scholar
  37. Ouréns R, Freire J, Fernández L (2012) Definition of a new unbiased gonad index for aquatic invertebrates and fish: its application to the sea urchin Paracentrotus lividus. Aquat Biol 17:145–152CrossRefGoogle Scholar
  38. Ouréns R, Flores L, Fernández L, Freire J (2013) Habitat and density-dependent growth of the sea urchin Paracentrotus lividus in Galicia (NW Spain). J Sea Res 76:50–60CrossRefGoogle Scholar
  39. Pearse JS, Arch SW (1969) The aggregation behavior of Diadema (Echinodermata, Echinoidea). Micronesica 5:165–171Google Scholar
  40. Pennington JT (1985) The ecology of fertilization of echinoid eggs: the consequences of sperm dilution, adult aggregation, and synchronous spawning. Biol Bull 169:417–430CrossRefGoogle Scholar
  41. Pinheiro JC, Bates DM (2000) Mixed effects models in S and S-Plus. Springer, New-York, p 528CrossRefGoogle Scholar
  42. Roa R, Ernst B, Tapia F (1999) Estimation of size at sexual maturity: an evaluation of analytical and resampling procedures. Fish Bull 97:570–580Google Scholar
  43. Rogers-Bennett L, Bennett WA, Fastenau HC, Dewees CM (1995) Spatial variation in sea red urchin reproduction and morphology: implications for harvest refugia. Ecol Appl 5(4):1171–1180CrossRefGoogle Scholar
  44. Rogers-Bennett L, Rogers DW, Bennett WA, Ebert TA (2003) Modeling red sea urchin (Strongylocentrotus franciscanus) growth using six growth functions. Fish Bull 101(3):614–626Google Scholar
  45. Saborido-Rey F, Junquera S (1998) Histological assessment of variations in sexual maturity of cod (Gadus morhua L.) at the Flemish Cap (north-west Atlantic). ICES J Mar Sci 55:515–521CrossRefGoogle Scholar
  46. Sánchez-España AI, Martínez-Pita I, García JF (2004) Gonadal growth and reproduction in the commercial sea urchin Paracentrotus lividus (Lamarck, 1816) (Echinodermata: Echinoidea) from southern Spain. Hydrobiologia 519:61–72CrossRefGoogle Scholar
  47. Schwarz G (1978) Estimating the dimension of a model. Ann Statist 6(2):461–464CrossRefGoogle Scholar
  48. Sellem F, Guillou M (2007) Reproductive biology of Paracentrotus lividus Echinodermata: Echinoidea) in two contrasting habitats of northernTunisia (south-east Mediterranean). J Mar Biol Ass UK 87:763–767CrossRefGoogle Scholar
  49. Semroud R, Kada H (1987) Contribution a l′etude de l′oursin Paracentrotus lividus dans la region d′Alger: indice de repletion et indice gonadique. In: Boudouresque CF (ed) Colloque international sur Paracentrotus lividus et les oursins comestibles. GIS Posidonie, Marseilles, pp 117–124Google Scholar
  50. Shpigel M, McBride SC, Marciano S, Lupatsch I (2004) The effect of photoperiod and temperature on the reproduction of the European sea urchin Paracentrotus lividus. Aquaculture 232:343–355CrossRefGoogle Scholar
  51. Spirlet C, Grosjean P, Jangoux M (1998) Reproductive cycle of the echinoid Paracentrotus lividus: analysis by means of the maturity index. Invertebr Reprod Dev 34(1):69–81CrossRefGoogle Scholar
  52. Spirlet C, Grosjean P, Jangoux M (2000) Optimization of gonad growth by manipulation of temperature and photoperiod in cultivated sea urchins, Paracentrotus lividus (Lamarck) (Echinodermata). Aquaculture 185:85–99CrossRefGoogle Scholar
  53. Tomas F, Romero J, Turon X (2005) Experimental evidence that intra-specific competition in seagrass meadows reduces reproductive potential in the sea urchin Paracentrotus lividus. Sci Mar 69(4):475–484CrossRefGoogle Scholar
  54. Trippel EA, Harvey HH (1991) Comparison of methods used to estimate age and length of fishes at sexual maturity using populations of white sucker (Catostomus commersoni). Can J Fish Aquat Sci 48:1446–1459CrossRefGoogle Scholar
  55. Turon X, Giribet G, López S, Palacín C (1995) Growth and population structure of Paracentrotus lividus (Echinodermata: Echinoidea) in two contrasting habitats. Mar Ecol Prog Ser 122:193–204CrossRefGoogle Scholar
  56. Tuya F, Cisneros-Aguirre J, Ortega-Borges L, Haroun RJ (2007) Bathymetric segregation of sea urchins on reefs of the Canarian Archipelago: role of flow-induced forces. Est Coast Shelf Sci 73:481–488CrossRefGoogle Scholar
  57. Unger B, Lott C (1994) In-situ studies on the aggregation behaviour of the sea urchin Sphaerechinus granularis Lam. (Echinidermata: Echinoidea). In: David B, Guille A, Féral JP, Roux M (Eds) Echinoderms through time. Proceedings of the Eighth International Echinoderm Conference, Dijon, France, 1993. Balkema, Rotterdam, pp 913–919Google Scholar
  58. Unuma T, Yamamoto T, Akiyama T, Shiraishi M, Ohta H (2003) Quantitative changes in yolk protein and other components in the ovary and testis of the sea urchin Pseudocentrotus depressus. J Exp Biol 206:365–372CrossRefGoogle Scholar
  59. Urgorri V, Reboreda P, Troncoso J (1994) Dispersión, demografía y producción gonadal de una población de Paracentrotus lividus. Universidade de Santiago de Compostela. 172 ppGoogle Scholar
  60. Vadas RL, Elner RW, Garwood PE, Babb IG (1986) Experimental evaluation of aggregation behavior in the sea urchin Strongylocentrotus droebachiensis.A reinterpretation. Mar Biol 90:433–488CrossRefGoogle Scholar
  61. Vega-Suárez W, Romero-Kutzner V (2011) Patrón de distribución espacial de Paracentrotus lividus. An Univ Etol 5:21–30Google Scholar
  62. Veiga Villar AJ (1999) Caracterización de la flora y vegetación bentónica marina intermareal y de su riqueza en recursos explotables en las Rías Baixas Gallegas (NO. Península Ibérica). Dissertation, Universidade de A Coruña, SpainGoogle Scholar
  63. Walker CW, Unuma T, Lesser MP (2007) Gametogenesis and reproduction of sea urchins. In: Lawrence JM (ed) Edible sea urchins: biology and ecology, 2nd edition, Elsevier. Dev Aquac Fish Sci 37: 11–30Google Scholar
  64. Williams H (2002) Sea urchin fisheries of the world: a review of their status, management strategies and biology of the principal species. Department of Primary Industries, Water and Environment, Government of Tasmania, p 27Google Scholar
  65. Williams JR, Babcock RC (2005) Assessment of size at maturity and gonad index methods for the scallop Pecten novaezelandiae. N Z J Mar Freshw Res 39:851–864CrossRefGoogle Scholar
  66. Willis JK, McClain EP, Pichel WG, Walton CC (1985) Comparative performance of multichannel sea surface temperatures. J Geophys Res C 6:11587–11601Google Scholar
  67. Zhu GP, Dai XJ, Song LM, Xu LX (2011) Size at sexual maturity of bigeye tuna Thunnus obesus (Perciformes: scombridae) in the tropical waters: a comparative analysis. Turk J Fish Aquat Sci 11:149–156Google Scholar
  68. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, Berlin, p 574CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rosana Ouréns
    • 1
    Email author
  • Luis Fernández
    • 1
  • María Fernández-Boán
    • 1
  • Inés Naya
    • 1
  • Juan Freire
    • 1
    • 2
  1. 1.Grupo de Recursos Marinos y PesqueríasUniversidad de A CoruñaA CoruñaSpain
  2. 2.Barrabés NextMadridSpain

Personalised recommendations