Marine Biology

, Volume 160, Issue 9, pp 2295–2317 | Cite as

Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding

  • Stefanie Kaiser
  • Simone N. Brandão
  • Saskia Brix
  • David K. A. Barnes
  • David A. Bowden
  • Jeroen Ingels
  • Florian Leese
  • Stefano Schiaparelli
  • Claudia P. Arango
  • Renuka Badhe
  • Narissa Bax
  • Magdalena Blazewicz-Paszkowycz
  • Angelika Brandt
  • Nils Brenke
  • Ana I. Catarino
  • Bruno David
  • Chantal De Ridder
  • Philippe Dubois
  • Kari E. Ellingsen
  • Adrian G. Glover
  • Huw J. Griffiths
  • Julian Gutt
  • Kenneth M. Halanych
  • Charlotte Havermans
  • Christoph Held
  • Dorte Janussen
  • Anne-Nina Lörz
  • David A. Pearce
  • Benjamin Pierrat
  • Torben Riehl
  • Armin Rose
  • Chester J. Sands
  • Anna Soler-Membrives
  • Myriam Schüller
  • Jan M. Strugnell
  • Ann Vanreusel
  • Gritta Veit-Köhler
  • Nerida G. Wilson
  • Moriaki Yasuhara
Review, Concept, and Synthesis

Abstract

In the Southern Ocean, that is areas south of the Polar Front, long-term oceanographic cooling, geographic separation, development of isolating current and wind systems, tectonic drift and fluctuation of ice sheets amongst others have resulted in a highly endemic benthic fauna, which is generally adapted to the long-lasting, relatively stable environmental conditions. The Southern Ocean benthic ecosystem has been subject to minimal direct anthropogenic impact (compared to elsewhere) and thus presents unique opportunities to study biodiversity and its responses to environmental change. Since the beginning of the century, research under the Census of Marine Life and International Polar Year initiatives, as well as Scientific Committee of Antarctic Research biology programmes, have considerably advanced our understanding of the Southern Ocean benthos. In this paper, we evaluate recent progress in Southern Ocean benthic research and identify priorities for future research. Intense efforts to sample and describe the benthic fauna, coupled with coordination of information in global databases, have greatly enhanced understanding of the biodiversity and biogeography of the region. Some habitats, such as chemosynthetic systems, have been sampled for the first time, while application of new technologies and methods are yielding new insights into ecosystem structure and function. These advances have also highlighted important research gaps, notably the likely consequences of climate change. In a time of potentially pivotal environmental change, one of the greatest challenges is to balance conservation with increasing demands on the Southern Ocean’s natural resources and services. In this context, the characterization of Southern Ocean biodiversity is an urgent priority requiring timely and accurate species identifications, application of standardized sampling and reporting procedures, as well as cooperation between disciplines and nations.

Notes

Acknowledgments

Ideas for this manuscript were initiated during a workshop on ‘Southern Ocean benthic biodiversity and distribution patterns’ held in Wilhelmshaven, Germany, in March 2010. We are grateful to Victoria Wadley (Census of Antarctic Marine Life) and Pedro Martínez Arbizu (Census of the Diversity of Abyssal Marine Life) for providing logistical and financial support for hosting this workshop. Katrin Linse (BAS) is thanked for valuable comments on an earlier draft of the manuscript. Additional funding was gratefully received from the German Research Foundation (DFG, code KA 2857/1-1) and the German Academic Exchange Service (DAAD) (S. Kaiser). S.N. Brandão was a Alexander von Humboldt fellow and also received support from SYNTHESYS and Encyclopedia of Life. C. Arango acknowledges support from the Australian Antarctic Science Grants (project AA3010) and CAML and the organizers of the Wilhelmshaven workshop for travel funding. NIWA staff was supported by the New Zealand Government under the New Zealand IPY-CAML Project (IPY2007-01); project governance provided by the Ministry of Fisheries Science Team and the Ocean Survey 20/20 CAML Advisory Group (Land Information New Zealand, Ministry of Fisheries, Antarctica New Zealand, Ministry of Foreign Affairs and Trade, and National Institute of Water and Atmosphere Ltd); part-funding was provided by the Ministry of Science and Innovation project COBR1302 (Biodiversity & Biosecurity). BAS staff was supported by the British Antarctic Survey Polar Science for Planet Earth Programme. A. Brandt acknowledges the support of the German Research Foundation (DFG) for support of the ANDEEP and ANDEEP-SYSTCO expeditions and various Southern Ocean projects (Br 1121/22, 1-3; Br 1121/26, 1-4; Br 1121/27-1; Br 1121/28-1; Br 1121/33-1; Br 1121/34-1; Br 1121/37-1; Br 1121/38-1; Br 1121/39-1; Br 1121/40-1; Br 1121/41, 1-; Br 1121/43-1; 436 RUS 17/20/02; 436 POL 17/6/03; 436 RUS 17/91/03; 436 RUS 17/103/05; 436 RUS 17/58/06) as well as to the University of Hamburg. J. Ingels and A. Vanreusel acknowledge support from the Belgian Science Policy and the ESF IMCOAST project with contributions of Research Foundation Flanders. F. Leese and C. Held were supported by DFG grants MA 3684/2 and LE 2323/2 within the priority program 1158. B. David and C. De Ridder received support from the Belgian Science Policy (Research project SD/BA/02A; BIANZO II) and ANR Antflocks ANR ANTFLOCKS (No. 07-BLAN-0213-01). D. Janussen thanks the DFG (DFG-Projects JA 1063/14-1.2, JA-1063-17-1), and SYNTHESYS (GB-TAF 885, NL-TAF 11, ES-TAF 1705, AT-TAF 2600) for their support. C. Havermans was financially supported by the Belgian Science Policy with an “Action II” grant (contract number WI/36/H04). T. Riehl received funding from the German National Academic Foundation (Studienstiftung des Deutschen Volkes). N. Wilson’s participation was facilitated by Scripps Institution of Oceanography and an NSF OPP grant ANT-1043749. Many thanks to Arne Pallentin (NIWA, Welington, NZ) for producing Fig. 1 and to Niki Davey (NIWA, Nelson, NZ), Marc Eléaume (Muséum national d’Histoire naturelle, Paris, France), Jürgen Guerrero-Kommritz (Universidad Javeriana, Bogotá, Colombia), Christopher Mah (Smithsonian Institution, Washington D.C., USA), Rafael Martin-Ledo (Universidad de Extremadura, Badajoz, Spain) and Kate Neill (NIWA, Wellington, NZ) for their help with species identifications (Fig. 2). The authors are grateful to the constructive comments of three anonymous referees, which helped to improve an earlier version of this manuscript. This publication is a contribution to the work achieved in the course of the CAML (publication # 83), CeDAMar and ANDEEP (publication # 177) projects.

Supplementary material

227_2013_2232_MOESM1_ESM.doc (62 kb)
Supplementary material 1 (DOC 62 kb)

References

  1. Ainley D, Tin T (2012) Antarctica. In: Hilty JA, Chester CC, Cross MS (eds) Climate and conservation. Island Press, Washington, pp 267–277CrossRefGoogle Scholar
  2. Allcock AL, Strugnell JM (2012) Southern Ocean diversity: new paradigms from molecular ecology. Trends Ecol Evol 27(9):520–528CrossRefGoogle Scholar
  3. Allcock AL, Brierley AS, Thorpe JP et al (1997) Restricted gene flow and evolutionary divergence between geographically separated populations of the Antarctic octopus Pareledone turqueti. Mar Biol 129:97–102CrossRefGoogle Scholar
  4. Anderson JB, Shipp SS, Lowe AL et al (2002) The Antarctic ice sheet during the last glacial maximum and its subsequent retreat history: a review. Quat Sci Rev 21:49–70CrossRefGoogle Scholar
  5. Arango CP, Wheeler WC (2007) Phylogeny of the sea spiders (Arthropoda, Pycnogonida) based on direct optimization of six loci and morphology. Cladistics 23:1–39CrossRefGoogle Scholar
  6. Arango CP, Soler-Membrives A, Miller KJ (2011) Genetic differentiation in the circum-Antarctic sea spider Nymphon australe (Pycnogonida; Nymphonidae). Deep-Sea Res Part II 58(1):212–219CrossRefGoogle Scholar
  7. Arntz WE, Brey T, Gallardo VA (1994) Antarctic zoobenthos. Adv Mar Biol 32:241–304Google Scholar
  8. Arntz WE, Gutt J, Klages M (1997) Antarctic marine biodiversity: an overview. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities. Species, structure and survival. Cambridge University Press, Cambridge, pp 3–14Google Scholar
  9. Arntz WE, Thatje S, Linse K et al (2006) Missing link in the Southern Ocean: sampling the marine benthic fauna of remote Bouvet Island. Polar Biol 29:83–96CrossRefGoogle Scholar
  10. Aronson RB, Blake DB, Oji T (1997) Retrograde community structure in the late Eocene of Antarctica. Geology 25:903–906CrossRefGoogle Scholar
  11. Aronson RB, Thatje S, Clarke A et al (2007) Climate change and invasibility of the Antarctic benthos. Annu Rev Ecol Evol Syst 38:129–154CrossRefGoogle Scholar
  12. Baird HP, Miller KJ, Stark JS (2012) Genetic population structure in the Antarctic benthos: insights from the widespread amphipod. Orchomenella franklini. PLoS ONE 7(3):e34363CrossRefGoogle Scholar
  13. Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744CrossRefGoogle Scholar
  14. Barnes DKA, Clarke A (1994) Seasonal variation in the feeding activity of four species of Antarctic Bryozoa in relation to environmental factors. J Exp Mar Biol Ecol 181:117–133CrossRefGoogle Scholar
  15. Barnes DKA, Clarke A (2011) Antarctic marine biology. Curr Biol 21:R451–R457CrossRefGoogle Scholar
  16. Barnes DKA, Hillenbrand CD (2010) Faunal evidence for a late quaternary trans-Antarctic seaway. Glob Change Biol 16:3297–3303CrossRefGoogle Scholar
  17. Barnes DKA, Peck LS (2005) Extremes of metabolic strategy in Antarctic Bryozoa. Mar Biol 147(4):979–988CrossRefGoogle Scholar
  18. Barnes DKA, Peck LS (2008) Vulnerability of Antarctic shelf biodiversity to predicted regional warming. Clim Res 37:149–163. doi:10.3354/cr00760 CrossRefGoogle Scholar
  19. Barnes DKA, Souster T (2011) Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nature Clim Change 1:365–368CrossRefGoogle Scholar
  20. Barnes DKA, Kaiser S, Griffiths HJ et al (2009) Marine, intertidal, fresh-water and terrestrial biodiversity of an isolated polar archipelago. J Biogeogr 36(4):756–769. doi:10.1111/j.1365-2699.2008.02030.x CrossRefGoogle Scholar
  21. Barnes DKA, Peck LS, Morley SA (2010) Ecological relevance of laboratory determined temperature limits: colonization potential, biogeography and resilience of Antarctic invertebrates to environmental change. Glob Change Biol 16(11):3164–3169Google Scholar
  22. Barry JP, Grebmeier JM, Smith J et al (2003) Oceanographic versus seafloor-habitat control of benthic megafaunal communities in the S.W. Ross Sea, Antarctica. Antarct Res Ser 78:327–354CrossRefGoogle Scholar
  23. Beaman RJ, Harris PT (2005) Bioregionalisation of the George V Shelf, East Antarctica. Cont Shelf Res 25:1657–1691CrossRefGoogle Scholar
  24. Beaumont MA, Nielsen R, Robert C et al (2010) In defence of model-based inference in phylogeography. Mol Ecol 9:436–446CrossRefGoogle Scholar
  25. Bednaršek N, Tarling GA, Bakker DCE et al (2012) Extensive dissolution of live pteropods in the Southern Ocean. Nature Geosci. doi:10.1038/NGEO1635 Google Scholar
  26. Bickford D, Lohman DJ, Sodhi NS et al (2007) Cryptic species as a window on diversity and conservation. Trend Ecol Evol 22:148–155CrossRefGoogle Scholar
  27. Blight LK, Ainley DG, Ackley SF et al (2010) Fishing for data in the Ross Sea. Science 330(6009):1316CrossRefGoogle Scholar
  28. Bowden DA, Schiaparelli S, Clark MR et al (2011) A lost world? Archaic crinoid-dominated assemblages on an Antarctic seamount. Deep-Sea Res Pt II 58:119–127CrossRefGoogle Scholar
  29. Brandão SN, Sauer J, Schön I (2010) Circumantarctic distribution in Southern Ocean benthos? A genetic test using the genus Macroscapha (Crustacea, Ostracoda) as a model. Mol Phylogenet Evol 55:1055–1069CrossRefGoogle Scholar
  30. Brandt A (1991) Zur Besiedlungsgeschichte des antarktischen Schelfes am Beispiel der Isopoda (Crustacea, Malacostraca). Ber Polarforsch 98:1–240Google Scholar
  31. Brandt A, Gooday AJ, Brandão SN et al (2007) First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447(7142):307–311CrossRefGoogle Scholar
  32. Brandt A, Bathmann U, Brix S et al (2011) Maud rise—a snapshot through the water column. Deep-Sea Res Pt II 58:1962–1982. doi:10.1016/j.dsr2.2011.01.008 CrossRefGoogle Scholar
  33. Brenke N (2005) An epibenthic sledge for operations on marine soft bottom and bedrock. Mar Technol Soc J 39:10–21CrossRefGoogle Scholar
  34. Bruchhausen PM, Raymond JA, Jacobs SS et al (1979) Fish, Crustaceans, and the sea floor under the Ross Ice Shelf. Science 203:449–451CrossRefGoogle Scholar
  35. Bucklin A, Ortman BD, Jennings RM et al (2010) A ‘‘Rosetta Stone’’ for zooplankton: DNA barcode analysis of holozooplankton diversity of the Sargasso Sea (NW Atlantic Ocean). Deep-Sea Res Pt II 57(24–26):2234–2247Google Scholar
  36. Budd AF, Foster CT, Dawson JP et al (2001) The Neogene marine biota of tropical America (“NMITA”) database: accounting for biodiversity in paleontology. J Paleont 73:743–751CrossRefGoogle Scholar
  37. CCAMLR XXVII (2008) Report of the twenty-seventh meeting of the scientific committee (CCAMLR-XXVII). CCAMLR, Hobart, Australia, http://www.ccamlr.org/en/CCAMLR-XXVII. Accessed 22 Dec 2012
  38. CCAMLR XXVIII (2009) Report of the twenty-eighth meeting of the scientific committee (CCAMLR-XXVIII). CCAMLR, Hobart, Australia, http://www.ccamlr.org/en/CCAMLR-XXVIII. Accessed 22 Dec 2012
  39. Choudhury M, Brandt A (2009) Benthic isopods (Crustacea, Malacostraca) from the Ross Sea, Antarctica: species checklist and their zoogeography in the Southern Ocean. Polar Biol 32:599–610CrossRefGoogle Scholar
  40. Chown SL, Lee JE, Hughes KA et al (2012) Challenges to the future conservation of the Antarctic. Science 337(6091):158–159CrossRefGoogle Scholar
  41. Clark MS, Fraser KPP, Peck LS (2008) Antarctic marine molluscs do have an HSP70 heat shock response. Cell Stress Chaperon 13(1):39–49CrossRefGoogle Scholar
  42. Clarke A (1996) Benthic marine habitats in Antarctica. In: Ross RM, Hofmann EE, Quetin LB (eds) Foundations for ecological research west of the Antarctic Peninsula. Antarct Res Ser 70:123–133Google Scholar
  43. Clarke A (2003) The polar deep seas. In: Tyler PA (ed) Ecosystems of the deep oceans. Elsevier, Amsterdam, pp 239–260Google Scholar
  44. Clarke A (2008) Antarctic marine benthic diversity: patterns and processes. J Exp Mar Biol Ecol 366:48–55CrossRefGoogle Scholar
  45. Clarke A, Crame JA (1992) The Southern Ocean benthic fauna and climate change—a historical perspective. Philos Trans R Soc B Biol Sci 338:299–309CrossRefGoogle Scholar
  46. Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol 41:47–114Google Scholar
  47. Clarke A, Tyler PA (2008) Adult Antarctic krill feeding at abyssal depths. Curr Biol 18:282–285CrossRefGoogle Scholar
  48. Clarke A, Griffiths HJ, Linse K et al (2007) How well do we know the Antarctic marine fauna? A preliminary study of macroecological and biogeographical patterns in Southern Ocean gastropod and bivalve molluscs. Divers Distrib 13:620–632CrossRefGoogle Scholar
  49. Clarke A, Griffiths HJ, Barnes DKA et al (2009) Spatial variation in seabed temperatures in the Southern Ocean: implications for benthic ecology and biogeography. J Geophys Res 114. doi:10.1029/2008JG000886
  50. Coleman CO, Lowry JK, Macfarlane T (2010) DELTA for beginners: an introduction into the taxonomy software package DELTA. ZooKeys 45:1–75CrossRefGoogle Scholar
  51. Cressey D (2012) Disappointment as Antarctic protection bid fails. Nature. doi:10.1038/nature.2012.11723 Google Scholar
  52. Culver SJ, Buzas MA (2000) Global latitudinal species diversity gradient in deep-sea benthic foraminifera. Deep-Sea Res Pt I 47:259–275CrossRefGoogle Scholar
  53. Cummings V, Thrush S, Norkko A, Andrew N, Hewitt J et al (2006) Accounting for local scale variability in benthos: implications for future assessments of latitudinal trends in the coastal Ross Sea. Antarc Sci 18(4):633–644CrossRefGoogle Scholar
  54. Danis B, Griffiths HJ (2009) Polar science: bid for freely accessible biodiversity archive. Nature 458. doi:10.1038/458830b
  55. David B, Choné T, Festeau A et al (2005) Biodiversity of Antarctic echinoids: a comprehensive and interactive database. Sci Mar 69:201–203Google Scholar
  56. Dayton PK (1989) Interdecadal recruitment and destruction of an Antarctic sponge population and its effect on local populations of asteroids. Science 245:1484–1486CrossRefGoogle Scholar
  57. Dayton PK, Oliver JS (1977) Antarctic soft-bottom benthos in oligotrophic and eutrophic environments. Science 197:55–58CrossRefGoogle Scholar
  58. De Broyer C, Danis B (eds) (2009) SCAR-MarBIN: the Antarctic marine biodiversity information network. World Wide Web electronic publication. Accessed May 2012Google Scholar
  59. De Broyer C, Danis B with 64 SCAR-MarBIN Taxonomic Editors (2011) How many species in the Southern Ocean? Towards a dynamic inventory of the Antarctic marine species. Deep-Sea Res Pt II 58(1–2):5–17Google Scholar
  60. Dell RK (1972) Antarctic benthos. Adv Mar Biol 10:1–216CrossRefGoogle Scholar
  61. Denton GH, Hughes TJ (2002) Reconstructing the Antarctic ice sheet at the last glacial maximum. Quat Sci Rev 21:193–202CrossRefGoogle Scholar
  62. Díaz A, Féral JF, David B et al (2011) Evolutionary pathways among shallow and deep-sea echinoids of the genus Sterechinus in the Southern Ocean. Deep-Sea Res Pt II 58:205–211CrossRefGoogle Scholar
  63. Domack E, Ishman S, Leventer A et al (2005) A chemotrophic ecosystem found beneath Antarctic ice shelf. EOS Trans AGU 86:269–278CrossRefGoogle Scholar
  64. Downey RV, Griffiths HJ, Linse K et al (2012) Diversity and distribution patterns in high southern latitude sponges. PLoS ONE 7(7):1–16:e41672. doi:10.1371/journal.pone.0041672
  65. Eléaume M, Hemery LG, Bowden DA et al (2011) A large new species of the genus Ptilocrinus (Echinodermata, stalked Crinoidea, Hyocrinidae) from Antarctic seamounts. Polar Biol 34:1385–1397CrossRefGoogle Scholar
  66. Fabry VJ, McClintock JB, Mathis JT et al (2009) Ocean acidification at high latitudes: the bellwether. Oceanography 22(4):160–171CrossRefGoogle Scholar
  67. Folmer O, Black M, Hoeh W et al (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299Google Scholar
  68. Fonseca G, Muthumbi AW, Vanreusel A (2007) Species richness of the genus Molgolaimus (Nematoda) from local to ocean scale along continental slopes. Mar Ecol 28(4):446–459. doi:10.1111/j.1439-0485.2007.00202.x CrossRefGoogle Scholar
  69. German CR, Livermore RA, Baker ET et al (2000) Hydrothermal plumes above the East Scotia Ridge: an isolated high-latitude back-arc spreading centre. Earth Planet Sci Lett 184(1):241–250. doi:10.1016/S0012-821X(00)00319-8 CrossRefGoogle Scholar
  70. Gheerardyn H, Veit-Köhler G (2009) Diversity and large-scale biogeography of Paramesochridae (Copepoda, Harpacticoida) in South Atlantic abyssal plains and the deep Southern Ocean. Deep-Sea Res Pt I 56:1804–1815CrossRefGoogle Scholar
  71. Göbbeler K, Klussmann-Kolb A (2010) Out of Antarctica? New insights into the phylogeny and biogeography of the Pleurobranchomorpha (Mollusca, Gastropoda). Mol Phylogenet Evol 55:996–1007CrossRefGoogle Scholar
  72. Goldberg EE, Roy K, Lande R et al (2005) Diversity, endemism and age distributions in macroevolutionary sources and sinks. Am Nat 165(6):623–633CrossRefGoogle Scholar
  73. González-Wevar CA, Nakano T, Canete JI et al (2010) Molecular phylogeny and historical biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean. Mol Phylogenet Evol 56:115–124CrossRefGoogle Scholar
  74. Grant RA, Griffiths H, Steinke D et al (2011) Antarctic DNA barcoding; a drop in the ocean? Polar Biol 34:775–780CrossRefGoogle Scholar
  75. Griffiths HJ (2010) Antarctic marine biodiversity—what do we know about the distribution of life in the Southern Ocean? PLoS ONE 5:e11683CrossRefGoogle Scholar
  76. Griffiths HJ, Linse K, Crame JA (2003) SOMBASE–Southern Ocean mollusc database: a tool for biogeographic analysis in diversity and ecology. Org Div Evol 3:207–213CrossRefGoogle Scholar
  77. Griffiths HJ, Barnes DKA, Linse K (2009) Towards a generalized biogeography of the Southern Ocean. J Biogeogr 36:162–177CrossRefGoogle Scholar
  78. Griffiths HJ, Danis B, Clarke A (2011) Quantifying Antarctic marine biodiversity: the SCARMarBIN data portal. Deep-Sea Res Pt II 58(1–2):18–29Google Scholar
  79. Gutt J (2007) Antarctic macro-zoobenthic communities: a review and a classification. Antarc Sci 19(2):165–182CrossRefGoogle Scholar
  80. Gutt J, Piepenburg D (2003) Scale-dependent impact on diversity of Antarctic benthos caused by grounding of icebergs. Mar Ecol Progr Ser 253:77–83CrossRefGoogle Scholar
  81. Gutt J, Sirenko BI, Smirnov IS et al (2004) How many macrozoobenthic species might inhabit the Antarctic shelf? Antarc Sci 16:11–16CrossRefGoogle Scholar
  82. Gutt J, Barratt I, Domack E et al (2011) Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep-Sea Res Pt II 58:74–83CrossRefGoogle Scholar
  83. Gutt J, Zurell D, Bracegridle TJ et al (2012) Correlative and dynamic species distribution modelling for ecological predictions in the Antarctic: a cross-disciplinary concept. Polar Res 31:11091. doi:10.3402/polar.v31i0.11091 CrossRefGoogle Scholar
  84. Halpern BS, Walbridge S, Selkoe KA et al (2008) A global map of human impact on marine ecosystems. Science 319:948CrossRefGoogle Scholar
  85. Hauquier F, Ingels J, Gutt J et al (2011) Characterisation of the nematode community of a low-activity cold seep in the recently ice-shelf free Larsen B area, Eastern Antarctic Peninsula. PLoS ONE 6(7):e22240. doi:10.1371/journal.pone.0022240 CrossRefGoogle Scholar
  86. Havermans C, Nagy ZT, Sonet G et al (2010) Incongruence between molecular phylogeny and morphological classification in amphipod crustaceans: a case study of Antarctic lysianassoids. Mol Phylogenet Evol 55:202–209CrossRefGoogle Scholar
  87. Hebert PDN, Ratnasingham S, de Waard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Roy Soc Lond B 270:S96–S99CrossRefGoogle Scholar
  88. Hedgpeth JW (1969) Introduction to Antarctic Zoogeography. Antarctic Map Folio Series, New YorkGoogle Scholar
  89. Held C (2000) Phylogeny and biogeography of serolid isopods (Crustacea, Isopoda, Serolidae) and the use of ribosomal expansion segments in molecular systematics. Mol Phylogenet Evol 15(2):165–178CrossRefGoogle Scholar
  90. Held C (2001) No evidence for slow-down of molecular substitution rates at subzero temperatures in Antarctic serolid isopods (Crustacea, Isopoda, Serolidae). Polar Biol 24:497–501CrossRefGoogle Scholar
  91. Held C, Wägele JW (2005) Cryptic speciation in the giant Antarctic isopod Glyptonotus antarcticus (Isopoda: Valvifera: Chaetiliidae). Sci Mar 69(2):175–181Google Scholar
  92. Hemery LG, Eléaume M, Roussel V et al (2012) Comprehensive sampling reveals circumpolarity and sympatry in seven mitochondrial lineages of the Southern Ocean crinoid species Promachocrinus kerguelensis (Echinodermata). Mol Ecol 21(10):2502–2518CrossRefGoogle Scholar
  93. Hétérier V, David B, De Ridder C et al (2008) Ectosymbiosis is a critical factor in the local benthic biodiversity of the Antarctic deep sea. Mar Ecol Progr Ser 364:67–76CrossRefGoogle Scholar
  94. Hofmann GE, Todgham AE (2010) Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annu Rev Physiol 72:127–145CrossRefGoogle Scholar
  95. Hosie G, Koubbi P, Riddle M et al (2011) CEAMARC, the Collaborative East Antarctic Marine Census for the Census of Antarctic Marine Life (IPY # 53): an overview. Pol Sci 5(2):75–87CrossRefGoogle Scholar
  96. Hunter RL, Halanych KM (2008) Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the Drake Passage in the Southern Ocean. J Hered 99:137–148CrossRefGoogle Scholar
  97. Ingels J, Vanhove S, De Mesel I et al (2006) The biodiversity and biogeography of the free-living nematode genera Desmodora and Desmodorella (family Desmodoridae) at both sides of the Scotia Arc. Polar Biol 29:936–949CrossRefGoogle Scholar
  98. Ingels J, Vanreusel A, Brandt A et al (2012) Possible effects of global environmental changes on Antarctic benthos: a synthesis across five major taxa. Ecol Evol 2:453–485CrossRefGoogle Scholar
  99. Jamieson RE, Rogers AD, Billett DSM et al (2012) Patterns of marine bacterioplankton biodiversity in the surface waters of the Scotia Arc, Southern Ocean. FEMS Microbiol Ecol 80(2):452–468CrossRefGoogle Scholar
  100. Janecki T, Kidawa A, Potocka M (2010) The effects of temperature and salinity on vital biological functions of the Antarctic crustacean Serolis polita. Polar Biol 33:1013–1020CrossRefGoogle Scholar
  101. Janosik AM, Halanych KM (2010) Unrecognized Antarctic biodiversity: a case study of the genus Odontaster (Odontasteridae; Asteroidea). Integr Comp Biol:1–12Google Scholar
  102. Kaiser S, Barnes DKA (2008) Southern Ocean deep-sea biodiversity; sampling strategies and predicting responses to climate change? Climate Res 37(2–3):121–270Google Scholar
  103. Kaiser S, Barnes DKA, Brandt A (2007) Slope and deep-sea abundance across scales: southern Ocean isopods show how complex the deep sea can be. Deep-Sea Res Pt II 54:1776–1789CrossRefGoogle Scholar
  104. Kaiser S, Barnes DKA, Sands CJ et al (2009) Biodiversity of an unknown Antarctic Sea: assessing isopod richness and abundance in the first benthic survey of the Amundsen continental shelf. Mar Biodiv 39(1):27–43CrossRefGoogle Scholar
  105. Kawaguchi S, Kurihara H, King R et al (2011) Will krill fare well under Southern Ocean acidification? Biol Lett 7(2):288–291CrossRefGoogle Scholar
  106. Khatiwala S, Primeau F, Hall T (2009) Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462:346–349CrossRefGoogle Scholar
  107. Knox GA, Lowry JK (1977) A comparison between the benthos of the Southern Ocean and the North Polar Ocean with special reference to the amphipods and the Polychaeta. In: Dunbar MJ (ed) Polar oceans. Arctic Institute of North America, Calgary, pp 423–462Google Scholar
  108. Krabbe K, Leese F, Mayer C et al (2010) Cryptic mitochondrial lineages in the widespread pycnogonid Colossendeis megalonyx Hoek, 1881 from Antarctic and Subantarctic waters. Polar Biol 33:281–292CrossRefGoogle Scholar
  109. Kroeker KJ, Kordas RL, Crim RN et al (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434CrossRefGoogle Scholar
  110. Kröger K, Rowden AA (2008) Polychaete assemblages of the northwestern Ross Sea shelf: worming out the environmental drivers of Antarctic macrobenthic assemblage composition. Polar Biol 31:971–989CrossRefGoogle Scholar
  111. Kühl S, Schneppenheim R (1986) Electrophoretic investigation of genetic variation in two krill species Euphausia superba and E. crystallorophias (Euphausiidae). Polar Biol 6(1):17–23CrossRefGoogle Scholar
  112. la Salle J, Wheeler QD, Jackway P et al (2009) Accelerating taxonomic discovery through automated character extraction. Zootaxa 2217:43–55Google Scholar
  113. Lawver LA, Gahagan LM (2003) Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr Palaeocl 198:11–37CrossRefGoogle Scholar
  114. Leese F, Agrawal S, Held C (2010) Long-distance island hopping without dispersal stages: transportation across major zoogeographic barriers in a Southern Ocean isopod. Naturwissenschaften. doi:10.1007/s00114-010-0674-y Google Scholar
  115. Leese F, Brand P, Rozenberg A et al (2012) Exploring Pandora’s box: potential and pitfalls of low coverage genome surveys for evolutionary biology. PLoS ONE 7(11):e49202. doi:10.1371/journal.pone.0049202 CrossRefGoogle Scholar
  116. Linse K, Griffiths HJ, Barnes DKA et al (2006) Biodiversity and biogeography of Antarctic and sub-Antarctic Mollusca. Deep-Sea Res Pt II 53:985–1008CrossRefGoogle Scholar
  117. Lörz AN, Maas EW, Linse K et al (2009) Do circum-Antarctic species exist in peracarid Amphipoda? A case study in the genus Epimeria Costa, 1851 (Crustacea, Peracarida, Epimeriidae). ZooKeys 18:91–128Google Scholar
  118. Lörz AN, Kaiser S, Bowden DA (2013) Macrofaunal crustaceans in the benthic boundary layer from the shelf break to abyssal depths in the Ross Sea (Antarctica). Polar Biol 36:445–451. doi:10.1007/s00300-012-1269-1 CrossRefGoogle Scholar
  119. Mahon AR, Thornhill DJ, Norenburg JL et al (2010) DNA uncovers Antarctic nemertean biodiversity and exposes a decades-old cold case of asymmetric inventory. Polar Biol 33:193–202CrossRefGoogle Scholar
  120. Majoran S, Dingle RV (2002) Cenozoic deep-sea ostracods from Maud Rise, Weddell Sea, Antarctica (ODP Site 689): a palaeoceanographical perspective. Geobios 35(1):137–152CrossRefGoogle Scholar
  121. Marsh L, Copley J, Huvenne V et al (2012) Microdistribution of faunal assemblages at deep-sea hydrothermal vents in the Southern Ocean. PLoS ONE 7(10):e48348. doi:10.1371/journal.pone.0048348 CrossRefGoogle Scholar
  122. Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091CrossRefGoogle Scholar
  123. Menzies RJ, Schultz GA (1966) Antarctic Isopod Crustaceans. I. First photographs of isopod Crustaceans on the Deep-sea Floor. Int Revue ges Hydrobiol 51(2):225–227Google Scholar
  124. Meredith MP, King JC (2005) Climate change in the ocean to the west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:L19604CrossRefGoogle Scholar
  125. Mikhalevich VI (2004) The general aspects of the distribution of Antarctic foraminifera. Micropaleontology 50(2):179–194Google Scholar
  126. Mora C, Sale P (2011) Ongoing global biodiversity loss and the need to move beyond protected areas: a review of the technical and practical shortcoming of protected areas on land and sea. Mar Ecol Progr Ser 434:251–266CrossRefGoogle Scholar
  127. Moran AL, Woods HA (2012) Why might they be giants? Towards an understanding of polar gigantism. J Exp Biol 215:1995–2002. doi:10.1242/jeb.067066 CrossRefGoogle Scholar
  128. Moy AD, Howard WR, Bray SG (2009) Reduced calcification in modern Southern Ocean planktonic foraminifera. Nat Geosci 2:276–280CrossRefGoogle Scholar
  129. Mulvaney R, Abram NJ, Hindmarsh RCA et al (2012) Recent Antarctic Peninsula warming relative to holocene climate and ice-shelf history. Nature. doi:10.1038/nature11391 Google Scholar
  130. Murray J (1895) A summary of the scientific results of the voyage of H.M.S. Challenger during the years 1872–76. Second part, pp 1432–1462Google Scholar
  131. Newman L, Convey P, Gibson JAE et al (2009) Antarctic paleobiology: glacial refugia and constraints on past icesheet reconstructions. PAGES News 17:22–24Google Scholar
  132. Norman JR (1937) Coast fishes. Part II. The Patagonian region. Discovery Rep 16:1–150Google Scholar
  133. Orr JC, Fabry VJ, Aumont O et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686CrossRefGoogle Scholar
  134. Page TJ, Linse K (2002) More evidence of speciation and dispersal across the Antarctic Polar Front through molecular systematics of Southern Ocean Limatula (Bivalvia: Limidae). Polar Biol 25:818–826Google Scholar
  135. Pawlowski J, Fahmi J, Lecroq B et al (2007) Bipolar gene flow in deep-sea benthic foraminifera. Mol Ecol 16:4089–4096CrossRefGoogle Scholar
  136. Pearse JS, McClintock JB, Bosch I (1991) Reproduction of Antarctic benthic marine invertebrates: tempos, modes, and timing. Am Zool 421:37–42Google Scholar
  137. Peck LS (2005) Prospects for surviving climate change in Antarctic aquatic species. Front Zool 2:9CrossRefGoogle Scholar
  138. Peck LS (2008) Brachiopods and climate change. Earth Env Sci Trans Roy Soc Edinburgh 98:451–456Google Scholar
  139. Peck LS, Webb K, Bailey D (2004) Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct Ecol 18:625–630CrossRefGoogle Scholar
  140. Peck LS, Convey P, Barnes DKA (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev 81(1):75–109CrossRefGoogle Scholar
  141. Peck LS, Clark MS, Morley SA et al (2009) Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct Ecol 23(2):248–256CrossRefGoogle Scholar
  142. Peck L, Morley S, Clark M (2010) Poor acclimation capacities in Antarctic marine ectotherms. Mar Biol 157(9):2051–2059CrossRefGoogle Scholar
  143. Pfenninger M, Schwenk K (2007) Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol Biol 7:e121CrossRefGoogle Scholar
  144. Pierrat B, Saucède T, Laffont R et al (2012) Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling. Mar Ecol Progr Ser 463:215–230CrossRefGoogle Scholar
  145. Pörtner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217CrossRefGoogle Scholar
  146. Pörtner HO, Peck L, Somero G (2007) Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philos Trans Roy Soc B Biol Sci 362:2233–2258CrossRefGoogle Scholar
  147. Post AL, O’Brien PE, Beaman RJ et al (2010) Physical controls on deep-water coral communities on the George V Land slope, East Antarctica. Antarc Sci 22:371–378. doi:310.1017/S0954102010000180 CrossRefGoogle Scholar
  148. Poulin E, Palma AT, Féral JP (2002) Evolutionary versus ecological success in Antarctic benthic invertebrates. Trends Ecol Evol 17:218–222CrossRefGoogle Scholar
  149. Rahmann H, Schneppenheim R, Hilbig R et al (1984) Variability in brain ganglioside composition: a further molecular mechanism beside serum antifreeze-glykoproteins for adaptation to cold in Antarctic and Arctic-boreal fishes. Polar Biol 3(2):119–125CrossRefGoogle Scholar
  150. Rathburn AE, Pichon JJ, Ayress MA et al (1997) Microfossil and stable-isotope evidence for changes in Late Holocene palaeoproductivity and palaeoceanographic conditions in the Prydz Bay region of Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 131:485–510CrossRefGoogle Scholar
  151. Raupach MJ, Mayer C, Malyutina M et al (2009) Multiple origins of deep-sea Asellota (Crustacea: Isopoda) from shallow waters revealed by molecular data. Proc Roy Soc Lond B 276:799–808CrossRefGoogle Scholar
  152. Regan CT (1914) Fishes. British Antarctic (‘Terra Nova’) expedition, 1910. Natural history report. Zool Fish Terra Nova Exped 1:1–54Google Scholar
  153. Riddle MJ, Craven M, Goldsworthy PM et al (2007) A diverse benthic assemblage 100 km from open water under the Amery Ice Shelf, Antarctica. Paleoceanography 22 (P12):P1204. doi:10.1029/2006PA001327
  154. Riehl T, Kaiser S (2012) Conquered from the deep sea? A new deep-sea isopod species from the Antarctic shelf shows pattern of recent colonization. PLoS ONE 7(11):e49354. doi:10.1371/journal.pone.0049354 CrossRefGoogle Scholar
  155. Rintoul S, Speer K, Hofmann E et al (2009) Southern Ocean Observing System (SOOS): Rationale and strategy for sustained observations of the Southern Ocean. Community White Paper. Ocean Obs-09. Venice, ItalyGoogle Scholar
  156. Rogers AD (2012) Evolution and biodiversity of antarctic organisms—a molecular perspective. In: Rogers AD, Johnston NM, Murphy EJ, Clarke A (eds), Antarctica: an extreme environment in a changing world. Phil Trans Roy Soc Lond 417–467Google Scholar
  157. Rogers AD, Tyler PA, Connelly DP et al (2012) The discovery of new deep-sea hydrothermal vent communities in the Southern Ocean and implications for biogeography. PLoS Biol 10(11). doi:10.1371/journal.pbio.1001234
  158. Römisch K, Matheson T (2003) Cell biology in the Antarctic: studying life in the freezer. Nat Cell Biol 5:3–6. doi:10.1038/ncb0103-3 CrossRefGoogle Scholar
  159. Ruhl HA, Ellena JA, Smith KL Jr (2008) Connections between climate, food limitation, and carbon cycling in abyssal sediment communities. Proc Natl Acad Sci USA 105:17006–17011CrossRefGoogle Scholar
  160. Schiaparelli S, Alvaro MC, Bohn J et al (2010) “Hitchhiker” polynoid polychaetes in cold deep waters and their potential influence on benthic soft bottom food webs. Antarc Sci 22(4):399–407CrossRefGoogle Scholar
  161. Schiaparelli S, Danis B, Wadley V et al (2013) The Census of Antarctic Marine Life (CAML): the first available baseline for Antarctic marine biodiversity. In: Verde C, di Prisco G (eds) Adaptation and evolution in marine environments, the impacts of global change on biodiversity. Springer Book Series: From Pole to Pole (Series Eds: Kallenborn R, di Prisco G, Walton D, Barr S) 2, pp 3–19Google Scholar
  162. Schüller M (2011) Evidence for a role of bathymetry and emergence in speciation in the genus Glycera (Glyceridae, Polychaeta) from the deep Eastern Weddell Sea. Polar Biol 34:549–564CrossRefGoogle Scholar
  163. Sewell MA, Hofmann GE (2011) Antarctic echinoids and climate change: a major impact on brooding forms. Glob Change Biol 17:734–744CrossRefGoogle Scholar
  164. Sigman DM, Hain MP, Haug GH (2010) The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466(7302):47–55CrossRefGoogle Scholar
  165. Smale DA, Barnes DKA, Fraser KPP et al (2008a) Benthic community response to iceberg scouring at an intensely disturbed shallow water site at Adelaide Island Antarctica. Mar Ecol Prog Ser 355:85–94CrossRefGoogle Scholar
  166. Smale DA, Brown KM, Barnes DKA et al (2008b) Ice scour disturbance in Antarctic waters. Science 321:371CrossRefGoogle Scholar
  167. Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine the ‘winners’ and ‘losers’. J Exp Biol 213:912–920CrossRefGoogle Scholar
  168. Strugnell JM, Rogers AD, Prodöhl PA et al (2008) The thermohaline expressway: the Southern Ocean as a centre of origin for deep-sea octopuses. Cladistics 24:853–860CrossRefGoogle Scholar
  169. Strugnell JM, Cherel Y, Cooke IR et al (2011) The Southern Ocean: source and sink? Deep-Sea Res Pt II 58:196–204CrossRefGoogle Scholar
  170. Strugnell JM, Watts PC, Smith J et al (2012) Persistent genetic signatures of historic climatic events in an Antarctic octopus. Mol Ecol 21(11):2775–2787CrossRefGoogle Scholar
  171. Terauds A, Chown SL, Morgan F et al (2012) Conservation biogeography of the Antarctic. Divers Distrib 18(7):726–741CrossRefGoogle Scholar
  172. Thorson G (1950) Reproduction and larval ecology of marine bottom invertebrates. Biol Rev Camb Philos Soc 25:1–45CrossRefGoogle Scholar
  173. Tin T, Fleming ZL, Hughes KA et al (2009) Impacts of local human activities on the Antarctic environment. Antarc Sci 21:3–33CrossRefGoogle Scholar
  174. Trivelpiece WZ, Hinke JT, Miller AK et al (2011) Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proc Natl Acad Sci 108:7625–7628CrossRefGoogle Scholar
  175. Trontelj P, Fiser C (2009) Cryptic species diversity should not be trivialised. Syst Biodiver 7:1–3CrossRefGoogle Scholar
  176. Van Hannen EJ, Veninga M, Bloem J et al (1999) Genetic changes in bacterial community structure associated with protistan grazers. Arch Hydrobiol 145:25–38Google Scholar
  177. Vaughan DG, Barnes DKA, Fretwell PT et al (2011) Potential seaways across West Antarctica. Geochem Geophys Geosyst 12:Q10004CrossRefGoogle Scholar
  178. Wakeley J (2010) Natural selection and coalescent theory. In: Bell MA, Futuyma DJ, Eanes WF, Levinton JS (eds) Evolution since Darwin: the first 150 years. Sinauer and Associates, Sunderland, MA, pp 119–149Google Scholar
  179. Waller CL, Worland MR, Convey P et al (2006) Ecophysiological strategies of Antarctic intertidal invertebrates faced with freezing stress. Polar Biol 29:1077–1083CrossRefGoogle Scholar
  180. West NJ, Obernosterer I, Zemb O et al (2008) Major differences of bacterial diversity and activity inside and outside of a natural iron-fertilized phytoplankton bloom in the Southern Ocean. Environ Microbiol 10:738–756CrossRefGoogle Scholar
  181. White MG (1984) Marine benthos. In: Laws RM (ed) Antarctic ecology, 2nd edn. Academic Press, London, pp 421–461Google Scholar
  182. Whitehouse MJ, Meredith MP, Rothery P et al (2008) Rapid warming of the ocean around South Georgia, Southern Ocean, during the 20th Century: forcings, characteristics and implications for lower trophic levels. Deep-Sea Res I 55:1218–1228CrossRefGoogle Scholar
  183. Wilson NG, Hunter RL, Lockhart SJ et al (2007) Multiple lineages and absence of panmixia in the ‘circumpolar’ crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica. Mar Biol 152:895–904CrossRefGoogle Scholar
  184. Wilson NG, Schrödl M, Halanych KM (2009) Ocean barriers and glaciation: evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Mol Ecol 18:965–984CrossRefGoogle Scholar
  185. Würzberg L, Peters J, Schüller M et al (2011) Diet insights of deep-sea polychaetes derived from fatty acid analyses. Deep-Sea Res Pt II 58(1–2):153–162Google Scholar
  186. Yasuhara M, Kato M, Ikeya N et al (2007) Modern Benthic Ostracodes from Lützow-Holm Bay, East Antarctica: paleoceanographic, paleobiogeographic, and evolutionary significance. Micropaleontology 53(6):469–496CrossRefGoogle Scholar
  187. Yasuhara M, Cronin TM, Hunt G et al (2009) Deep-Sea ostracods from the South Atlantic sector of the Southern Ocean during the last 370,000 years. J Paleontol 83:914–930CrossRefGoogle Scholar
  188. Yasuhara M, Hunt G, Dowsett HJ et al (2012) Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecol Lett 15:1174–1179CrossRefGoogle Scholar
  189. Young JS, Peck LS, Matheson T (2006) The effects of temperature on walking and righting in temperate and Antarctic crustaceans. Polar Biol 29:978–987CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stefanie Kaiser
    • 1
    • 2
    • 3
    • 4
  • Simone N. Brandão
    • 1
    • 2
  • Saskia Brix
    • 2
  • David K. A. Barnes
    • 5
  • David A. Bowden
    • 3
  • Jeroen Ingels
    • 7
  • Florian Leese
    • 8
  • Stefano Schiaparelli
    • 9
  • Claudia P. Arango
    • 10
  • Renuka Badhe
    • 6
  • Narissa Bax
    • 11
  • Magdalena Blazewicz-Paszkowycz
    • 12
  • Angelika Brandt
    • 1
  • Nils Brenke
    • 13
  • Ana I. Catarino
    • 14
  • Bruno David
    • 15
  • Chantal De Ridder
    • 14
  • Philippe Dubois
    • 14
  • Kari E. Ellingsen
    • 17
  • Adrian G. Glover
    • 18
  • Huw J. Griffiths
    • 5
  • Julian Gutt
    • 19
  • Kenneth M. Halanych
    • 20
  • Charlotte Havermans
    • 16
  • Christoph Held
    • 19
  • Dorte Janussen
    • 21
  • Anne-Nina Lörz
    • 3
  • David A. Pearce
    • 5
  • Benjamin Pierrat
    • 15
  • Torben Riehl
    • 1
    • 2
  • Armin Rose
    • 13
  • Chester J. Sands
    • 5
  • Anna Soler-Membrives
    • 22
  • Myriam Schüller
    • 8
  • Jan M. Strugnell
    • 23
  • Ann Vanreusel
    • 7
  • Gritta Veit-Köhler
    • 13
  • Nerida G. Wilson
    • 24
    • 25
  • Moriaki Yasuhara
    • 26
    • 27
  1. 1.Biocenter Grindel and Zoological MuseumUniversity of HamburgHamburgGermany
  2. 2.DZMB, German Centre for Marine Biodiversity Research, Senckenberg am MeerHamburgGermany
  3. 3.National Institute of Water & Atmospheric Research LtdKilbirnie, WellingtonNew Zealand
  4. 4.National Oceanography CentreUniversity of Southampton Waterfront Campus European WaySouthamptonUK
  5. 5.British Antarctic SurveyCambridgeUK
  6. 6.Scientific Committee on Antarctic ResearchScott Polar Research InstituteCambridgeUK
  7. 7.Marine Biology DepartmentGhent UniversityGhentBelgium
  8. 8.Animal Ecology, Evolution and BiodiversityRuhr-Universität BochumBochumGermany
  9. 9.Department of Earth, Environmental and Life Sciences (DISTAV)GenoaItaly
  10. 10.Natural Environments ProgramQueensland MuseumSouth BrisbaneAustralia
  11. 11.Institute for Marine & Antarctic Studies (IMAS)HobartAustralia
  12. 12.Zakład Biologii Polarnej i OceanobiologiiUniwersytet ŁódzkiLódźPoland
  13. 13.DZMB, German Centre for Marine Biodiversity Research, Senckenberg am MeerWilhelmshavenGermany
  14. 14.Laboratoire de Biologie Marine (CP160/15)Université Libre de BruxellesBruxellesBelgium
  15. 15.BiogéosciencesUniversité de Bourgogne, UMR CNRS 6282DijonFrance
  16. 16.Royal Belgian Institute of Natural SciencesBrusselBelgium
  17. 17.Norwegian Institute for Nature Research (NINA)Fram CentreTromsøNorway
  18. 18.Department of ZoologyThe Natural History MuseumLondonUK
  19. 19.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  20. 20.Department of Biological SciencesAuburn UniversityAuburnUSA
  21. 21.Senckenberg Forschungsinstitut und Naturmuseum, Sektion Marine Evertebraten IFrankfurt a.MGermany
  22. 22.Unitat de ZoologiaUniversitat Autònoma de BarcelonaBellaterraSpain
  23. 23.Department of Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraAustralia
  24. 24.Scripps Institution of Oceanography, UCSDLa JollaUSA
  25. 25.The Australian MuseumSydneyAustralia
  26. 26.School of Biological Sciences, Swire Institute of Marine ScienceUniversity of Hong KongHong Kong SARChina
  27. 27.Department of Earth SciencesUniversity of Hong KongHong Kong SARChina

Personalised recommendations