Marine Biology

, Volume 160, Issue 9, pp 2375–2382 | Cite as

Effects of attached data-logging devices on little penguins (Eudyptula minor)

  • Philippa AgnewEmail author
  • Chris Lalas
  • Janine Wright
  • Steve Dawson
Original Paper


Data-logging devices are commonly used to study the foraging behaviour of individual seabirds. Such studies need to examine the potential effects of using devices on instrumented individuals, not only for ethical reasons but also to ensure the validity of data gathered. We studied the effects of two types of device (time-depth recorder and global positioning system) on little penguins (Eudyptula minor) during the 2010 and 2011 breeding season at Oamaru, New Zealand. Mixed-effect models were used to test for effects of devices by comparing changes in body weight, chick growth and breeding performance between instrumented and control individuals. We found no detectable effects of the attached devices on body weight change, hatching success, fledging success, chick growth parameters or adult survival. We conclude that it is possible to attach data-logging devices to adult little penguins for extended periods during the breeding season with minimal impacts.


Global Position System Breeding Season Breeding Success Peak Mass Deviance Information Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Funding for the project was provided by the Oamaru Blue Penguin Colony. We wish to thank the colony manager, Jason Gaskill, for facilitating funding and for his ongoing support. We also wish to thank the Waitaki Development Board for their support. We thank Robyn Maynard-Williams for her assistance in the field. We thank Georgina Griffiths and the NIWA National Climate Centre for providing information about the August storm.


  1. Ackerman JT, Adams J, Takekawa JY, Carter HR, Whitworth DL, Newman SH, Golighty RT, Orthmeyer DL (2004) Effects of radiotransmitters on the reproductive performance of Cassin’s auklets. Wildl Soc Bull 32:1229–1241. doi:10.2193/0091-7648(2004)032[1229:eorotr];2CrossRefGoogle Scholar
  2. Adams J, Scott D, McKechnie S, Blackwell G, Shaffer SA, Moller H (2009) Effects of geolocation archival tags on reproduction and adult body mass of sooty shearwaters (Puffinus griseus). N Z J Zool 36:355–366CrossRefGoogle Scholar
  3. Anderson DR, Burnham KP, Thompson WL (2000) Null hypothesis testing: problems, prevalence, and an alternative. J Wildl Manag 64:912–923. doi: 10.2307/3803199 CrossRefGoogle Scholar
  4. Ballard G, Ainley DG, Ribic CA, Barton KR (2001) Effect of instrument attachment and other factors on foraging trip duration and nesting success of Adélie Penguins. Condor 103:481–490CrossRefGoogle Scholar
  5. Bannasch R, Wilson RP, Culik B (1994) Hydrodynamic aspects of design and attachment of a back-mounted device in penguins. J Exp Biol 194:83–96Google Scholar
  6. Barbraud C, Weimerskirch H (2012) Assessing the effect of satellite transmitters on the demography of the Wandering Albatross Diomedea exulans. J Ornithol 153:375–383. doi: 10.1007/s10336-011-0752-8 CrossRefGoogle Scholar
  7. Barron DG, Brawn JD, Weatherhead PJ (2010) Meta-analysis of transmitter effects on avian behaviour and ecology. Methods Ecol Evol 1:180–187. doi: 10.1111/j.2041-210X.2010.00013.x CrossRefGoogle Scholar
  8. Beaulieu M, Raclot T, Dervaux A, Le Maho Y, Ropert-Coudert Y, Ancel A (2009) Can a handicapped parent rely on its partner? An experimental study within Adélie penguin pairs. Anim Behav 78:313–320. doi: 10.1016/j.anbehav.2009.05.006 CrossRefGoogle Scholar
  9. Beaulieu M, Thierry AM, Handrich Y, Massemin S, Le Maho Y, Ancel A (2010) Adverse effects of instrumentation in incubating Adélie penguins (Pygoscelis adeliae). Polar Biol 33:485–492CrossRefGoogle Scholar
  10. Blackmer AL, Ackerman JT, Nevitt GA (2004) Effects of investigator disturbance on hatching success and nest-site fidelity in a long-lived seabird, Leach’s storm-petrel. Biol Conserv 116:141–148. doi: 10.1016/s0006-3207(03)00185-x CrossRefGoogle Scholar
  11. Burger AE, Shaffer SA (2008) Application of tracking and data-logging technology in research and conservation of seabirds. Auk 125:253–264. doi: 10.1525/auk.2008.1408 CrossRefGoogle Scholar
  12. Burnham KP, Anderson DR (2004) Multimodel inference—understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304. doi: 10.1177/0049124104268644 CrossRefGoogle Scholar
  13. Carey MJ (2011) Investigator disturbance reduces reproductive success in short-tailed Shearwaters Puffinus tenuirostris. Ibis 153:363–372. doi: 10.1111/j.1474-919X.2011.01109.x CrossRefGoogle Scholar
  14. Casper RM (2009) Guidelines for the instrumentation of wild birds and mammals. Anim Behav 78:1477–1483. doi: 10.1016/j.anbehav.2009.09.023 CrossRefGoogle Scholar
  15. Chiaradia A, Nisbet ICT (2006) Plasticity in parental provisioning and chick growth in little penguins Eudyptula minor in years of high and low breeding success. Ardea 94:257–270Google Scholar
  16. Collins M, Cullen JM, Dann P (1999) Seasonal and annual foraging movements of little penguins from Phillip Island, Victoria. Wildl Res 26:705–721CrossRefGoogle Scholar
  17. Cook TR, Cherel Y, Tremblay Y (2006) Foraging tactics of chick-rearing Crozet shags: individuals display repetitive activity and diving patterns over time. Polar Biol 29:562–569. doi: 10.1007/s00300-005-0089-y CrossRefGoogle Scholar
  18. Croll DA, Jansen JK, Goebel ME, Boveng PL, Bengtson JL (1996) Foraging behavior and reproductive success in chinstrap penguins: the effects of transmitter attachment. J Field Ornithol 67:1–9Google Scholar
  19. Croxall JP (1982) Energy costs of incubation and moult in petrels and penguins. J Anim Ecol 51:177–194CrossRefGoogle Scholar
  20. Culik B, Wilson RP (1991) Swimming energetics and performance of instrumented Adélie penguins (Pygoscelis-adeliae). J Exp Biol 158:355–368Google Scholar
  21. Culik BM, Bannasch R, Wilson RP (1994) External devices on penguins—how important is shape. Mar Biol 118:353–357CrossRefGoogle Scholar
  22. Gelman A, Rubin B (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–511CrossRefGoogle Scholar
  23. Hull CL (1997) The effect of carrying devices on breeding Royal Penguins. Condor 99:530–534CrossRefGoogle Scholar
  24. Johannesen E, Houston D, Russell J (2003) Increased survival and breeding performance of double breeders in little penguins Eudyptula minor, New Zealand: evidence for individual bird quality? J Avian Biol 34:198–210CrossRefGoogle Scholar
  25. Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108CrossRefGoogle Scholar
  26. Kidawa D, Jakubas D, Wojczulanis-Jakubas K, Iliszko L, Stempniewicz L (2012) The effects of loggers on the foraging effort and chick-rearing ability of parent little auks. Polar Biol 35:909–917. doi: 10.1007/s00300-011-1136-5 CrossRefGoogle Scholar
  27. Lebreton JD, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals—a unified approach with case studies. Ecol Monogr 62:67–118CrossRefGoogle Scholar
  28. Lovvorn JR, Liggins GA, Borstad MH, Calisal SM, Mikkelsen J (2001) Hydrodynamic drag of diving birds: effects of body size, body shape and feathers at steady speeds. J Exp Biol 204:1547–1557Google Scholar
  29. McMahon CR, Hindell MA, Harcourt RG (2012) Publish or perish: why it’s important to publicise how, and if, research activities affect animals. Wildl Res 39:375–377. doi: 10.1071/wr12014 CrossRefGoogle Scholar
  30. Numata M, Davis LS, Renner M (2000) Prolonged foraging trips and egg desertion in little penguins (Eudyptula minor). N Z J Zool 27:277–289CrossRefGoogle Scholar
  31. Numata M, Davis LS, Renner M (2004) Growth and survival of chicks in relation to nest attendance patterns of little penguins (Eudyptula minor) at Oamaru and Motuara Island, New Zealand. N Z J Zool 31:263–269CrossRefGoogle Scholar
  32. Perriman L, Houston D, Steen H, Johannesen E (2000) Climate fluctuation effects on breeding of blue penguins (Eudyptula minor). N Z J Zool 27:261–267CrossRefGoogle Scholar
  33. Plummer M (2009) JAGS Version 1.0.3 manual. Accessed 8 November 2012
  34. Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:7–11Google Scholar
  35. Preston TJ, Chiaradia A, Caarels SA, Reina RD (2010) Fine scale biologging of an inshore marine animal. J Exp Mar Biol Ecol 390:196–202CrossRefGoogle Scholar
  36. Robinson S, Chiaradia A, Hindell MA (2005) The effect of body condition on the timing and success of breeding in little penguins Eudyptula minor. Ibis 147:483–489CrossRefGoogle Scholar
  37. Ropert-Coudert Y, Wilson RP (2005) Trends and perspectives in animal-attached remote sensing. Front Ecol Environ 3:437–444CrossRefGoogle Scholar
  38. Ropert-Coudert Y, Kato A, Naito Y, Cannell BL (2003) Individual diving strategies in the little penguin. Waterbirds 26:403–408CrossRefGoogle Scholar
  39. Ropert-Coudert Y, Knott N, Chiaradia A, Kato A (2007a) How do different data logger sizes and attachment positions affect the diving behaviour of little penguins? Deep-Sea Res Part II 54:415–423. doi: 10.1016/j.dsr2.2006.11.018 CrossRefGoogle Scholar
  40. Ropert-Coudert Y, Wilson RP, Yoda K, Kato A (2007b) Assessing performance constraints in penguins with externally-attached devices. Mar Ecol Prog Ser 333:281–289CrossRefGoogle Scholar
  41. Saraux C, Robinson-Laverick SM, Le Maho Y, Ropert-Coudert Y, Chiaradia A (2011) Plasticity in foraging strategies of inshore birds: how little penguins maintain body reserves while feeding offspring. Ecology 92:1909–1916CrossRefGoogle Scholar
  42. Sohle IS, Moller H, Fletcher D, Robertson CJR (2000) Telemetry reduces colony attendance by sooty shearwaters (Puffinus griseus). N Z J Zool 27:357–365CrossRefGoogle Scholar
  43. Sokolov S, Rintoul SR, Wienecke B (2006) Tracking the Polar Front south of New Zealand using penguin dive data. Deep-Sea Res Part I-Oceanogr Res Papers 53:591–607. doi: 10.1016/j.dsr.2005.12.012 CrossRefGoogle Scholar
  44. Spiegelhalter DJ, Best NG, Carlin BR, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser B Stat Methodol 64:583–616. doi: 10.1111/1467-9868.00353 CrossRefGoogle Scholar
  45. Vandenabeele SP, Wilson RP, Grogan A (2011) Tags on seabirds: how seriously are instrument-induced behaviours considered? Anim Welf 20:559–571Google Scholar
  46. Vertigan C, McMahon CR, Andrews-Goff V, Hindell MA (2012) The effect of investigator disturbance on egg laying, chick survival and fledging mass of short-tailed shearwaters (Puffinus tenuirostris) and little penguins (Eudyptula minor). Anim Welf 21:101–111Google Scholar
  47. Walker KA, Trites AW, Haulena M, Weary DM (2012) A review of the effects of different marking and tagging techniques on marine mammals. Wildl Res 39:15–30. doi: 10.1071/wr10177 CrossRefGoogle Scholar
  48. Whidden SE, Williams CT, Breton AR, Buck CL (2007) Effects of transmitters on the reproductive success of tufted puffins. J Field Ornithol 78:206–212. doi: 10.1111/j.1557-9263.2007.00103.x CrossRefGoogle Scholar
  49. White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:S120–S139CrossRefGoogle Scholar
  50. White CR, Cassey P, Schimpf NG, Halsey LG, Green JA, Portugal SJ (2013) Implantation reduces the negative effects of bio-logging devices on birds. J Exp Biol 216:537–542. doi: 10.1242/jeb.076554 CrossRefGoogle Scholar
  51. Wilson RP, Grant WS, Duffy DC (1986) Recording devices on free-ranging marine animals: does measurement affect foraging performance? Ecology 67:1091–1093CrossRefGoogle Scholar
  52. Wilson RP, Spairani HJ, Coria NR, Culik BM, Adelung D (1990) Packages for attachment to seabirds—what color do Adélie penguins dislike least. J Wildl Manag 54:447–451. doi: 10.2307/3809657 CrossRefGoogle Scholar
  53. Wilson RP, Putz K, Peters G, Culik B, Scolaro JA, Charrassin JB, RopertCoudert Y (1997) Long-term attachment of transmitting and recording devices to penguins and other seabirds. Wildl Soc Bull 25:101–106Google Scholar
  54. Wilson RP, Gremillet D, Syder J, Kierspel MAM, Garthe S, Weimerskirch H, Schafer-Neth C, Scolaro JA, Bost CA, Plotz J, Nel D (2002) Remote-sensing systems and seabirds: their use, abuse and potential for measuring marine environmental variables. Mar Ecol Prog Ser 228:241–261CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Philippa Agnew
    • 1
    Email author
  • Chris Lalas
    • 1
  • Janine Wright
    • 2
  • Steve Dawson
    • 1
  1. 1.Department of Marine ScienceUniversity of OtagoDunedinNew Zealand
  2. 2.Department of Mathematics and StatisticsUniversity of OtagoDunedinNew Zealand

Personalised recommendations