Marine Biology

, Volume 160, Issue 7, pp 1661–1679 | Cite as

Short-term variability and control of phytoplankton photosynthetic activity in a macrotidal ecosystem (the Strait of Dover, eastern English Channel)

  • Emilie Houliez
  • Fabrice Lizon
  • Sébastien Lefebvre
  • Luis Felipe Artigas
  • François G. Schmitt
Original Paper


Short-term changes in phytoplankton photosynthetic activity were studied during different periods of the years 2009 and 2010 in the coastal waters of a macrotidal ecosystem (the Strait of Dover, eastern English Channel). During each sampling period, samples were taken every 1.45 h., from sunrise to sunset, during at least 5 days distributed along a complete spring–neap tide cycle. The photosynthetic parameters were obtained by measuring rapid light curves using pulse amplitude modulated fluorometry and were related to environmental conditions and phytoplankton taxonomic composition. The maximum quantum yield (F v/F m) showed clear light-dependent changes and could vary from physiological maxima (0.68–0.60) to values close to 0.30 during the course of 1 day, suggesting the operation of photoprotective mechanisms. The maximum electron transport rate (ETRm) and maximal light utilization efficiency (α) were generally positively correlated and showed large diel variability. These parameters fluctuated significantly from hour to hour within each day and the intraday pattern of variation changed significantly among days of each sampling period. Stepwise multiple linear regressions analyses indicated that light fluctuations explained a part of this variability but a great part of variability stayed unexplained. F v/F m, ETRm and α were not only dependent on the light conditions of the sampling day but also on those of the previous days. A time lag of 3 days in the effect of light on ETRm and α variation was highlighted. At these time scales, changes in phytoplankton community structure seemed to have a low importance in the variability in photosynthetic parameters. The photoacclimation index E k showed a lower variability and was generally different from the incident irradiance, indicating a limited acclimation capacity with a poor optimization of light harvesting during the day. However, in well-mixed systems such as the Strait of Dover, the short-term photoacclimation is disrupted by the high level of variability in environmental conditions. Also, the variability observed in the present study can be associated with a particular kind of photosynthetic response: the “E k-independent” variability. The physiological basis of this photosynthetic response is largely unresolved and further researches on this subject are still required to better explain the dynamics of phytoplankton activity in the Strait of Dover.


Phytoplankton Photosynthetic Parameter Phytoplankton Assemblage Phytoplankton Community Structure Photoprotective Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Valérie Gentilhomme for her help during laboratory measurements of nutrient concentrations, Jessica Chicheportiche for chlorophyll a analyses and Xavier Mériaux for his help during the analyses of chl a-specific absorption coefficients. Finally, we thank three anonymous reviewers for their helpful comments which improved the manuscript. This study forms part of the PhD thesis of E.H. financially supported by a grant from the French “Ministère de l’Enseignement Supérieur et de la Recherche” and the DYMAPHY INTERREG IVA “2 Mers Seas Zeeën” project co-funded by the European Union (ERDF funds).


  1. Aminot A, Kérouel R (2004) Hydrologie des écosystèmes marins. Paramètres et analyses. Editions de l’Ifremer, Brest, p 335Google Scholar
  2. Aminot A, Kérouel R (2007) Dosage automatique des nutriments dans les eaux marines, vol 1. Editions de l’Ifremer, pp 188Google Scholar
  3. Anning T, MacIntyre HL, Pratt SM, Sammes PJ, Gibb S, Geider RJ (2000) Photoacclimation in the marine diatom Skeletonema costatum. Limnol Oceanogr Methods 45:1807–1817. doi: 10.4319/lo.2000.45.8.1807 CrossRefGoogle Scholar
  4. Azevedo IC, Duarte P, Bordalo AA (2010) Temporal and spatial variability of phytoplankton photosynthetic characteristics in a southern European estuary (Douro, Portugal). Mar Ecol Prog Ser 412:29–44. doi: 10.3354/meps08669 CrossRefGoogle Scholar
  5. Behrenfeld MJ, Halsey KH, Milligan AJ (2008) Evolved physiological responses of phytoplankton to their integrated growth environment. Philos Trans R Soc B 363:2687–2703. doi: 10.1098/rstb.2008.0019 CrossRefGoogle Scholar
  6. Behrenfeld MJ, Prasil O, Babin M, Bruyant F (2004) In search of a physiological basis for covariations in light-limited and light-saturated photosynthesis. J Phycol 40(1):4–25. doi: 10.1046/j.1529-8817.2004.03083.x CrossRefGoogle Scholar
  7. Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632. doi: 10.1890/07-0986.1 CrossRefGoogle Scholar
  8. Breton E, Brunet C, Sautour B, Brylinski JM (2000) Annual variations of phytoplankton biomass in the eastern English Channel: comparison by pigment signatures and microscopic counts. J Plankton Res 22(8):1423–1440. doi: 10.1093/plankt/22.8.1423 CrossRefGoogle Scholar
  9. Brunet C, Brylinski JM, Frontier S (1992) Productivity, photosynthetic pigments and hydrology in the coastal front of the eastern English Channel. J Plankton Res 14:1541–1552. doi: 10.1093/plankt/14.11.1541 CrossRefGoogle Scholar
  10. Brunet C, Brylinski JM, Lemoine Y (1993) In situ variations of the xanthophylls diatoxanthin and diadinoxanthin: photoadaptation and relationships with a hydrodynamical system in the eastern English Channel. Mar Ecol Prog Ser 102:69–77. doi: 10.3354/meps102069 CrossRefGoogle Scholar
  11. Brunet C, Casotti R, Vantrepotte V (2008) Phytoplankton diel and vertical variability in photobiological responses at a coastal station in the Mediterranean Sea. J Plankton Res 30(6):645–654. doi: 10.1093/plankt/fbn028 CrossRefGoogle Scholar
  12. Brylinski JM, Lagadeuc Y, Gentilhomme V, Dupont JP, Lafite R, Dupeuple PA, Huault MF, Auger Y, Puskaric E, Wartel M, Cabioch L (1991) Le “fleuve côtier”: un phénomène hydrologique important en Manche orientale. Exemple du Pas-de-Calais. Oceanol Acta 11:197–203Google Scholar
  13. Brzezinski MA (1985) The Si:C:N ratio of marine Diatoms: interspecific variability and the effect of some environmental variables. J Phycol 21:347–357. doi: 10.1111/j.0022-3646.1985.00347.x CrossRefGoogle Scholar
  14. Buma AGJ, Noordeloos AAM, Larsen J (1993) Strategies and kinetics of photoacclimation on three Antarctic nanophytoflagellates. J Phycol 29(4):407–417. doi: 10.1111/j.1529-8817.1993.tb00141.x CrossRefGoogle Scholar
  15. Claquin P, Ni Longphuirt S, Fouillaron P, Huonnic P, Ragueneau O, Klein C, Leynaert A (2010) Effects of simulated benthic fluxes on phytoplankton dynamic and photosynthetic parameters in a mesocosm experiment (Bay of Brest, France). Estuar Coast Shelf Sci 86:93–101. doi: 10.1016/j.ecss.2009.10.017 CrossRefGoogle Scholar
  16. Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Natural Environment Research Council, UK, p 144Google Scholar
  17. Claustre H, Kerhervé P, Marty JC, Prieur L (1994) Phytoplankton photoadaptation related to some frontal physical processes. J Mar Syst 5:251–265. doi: 10.1016/0924-7963(94)90050-7 CrossRefGoogle Scholar
  18. Cruz S, Serôdio J (2008) Relationship of rapid light curves of variable fluorescence to photoacclimation and non-photochemical quenching in a benthic diatom. Aquat Bot 88(3):256–264. doi: 10.1016/j.aquabot.2007.11.001 CrossRefGoogle Scholar
  19. Cullen JJ, Lewis MR (1988) The kinetics of algal photoadaptation in the context of vertical mixing. J Plankton Res 10:1039–1063. doi: 10.1093/plankt/10.5.1039 CrossRefGoogle Scholar
  20. Dimier C, Giovanni S, Ferdinando T, Brunet C (2009) Comparative ecophysiology of the xanthophyll cycle in six marine phytoplanktonic species. Protist 160(3):397–411. doi: 10.1016/j.protis.2009.03.001 CrossRefGoogle Scholar
  21. Dubinsky Z, Schofield O (2010) From the light to the darkness: thriving at the light extremes in the oceans. Hydrobiologia 639:153–171. doi: 10.1007/s10750-009-0026-0 CrossRefGoogle Scholar
  22. Eilers PHC, Peeters JCH (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model 42(3–4):199–215. doi: 10.1016/0304-3800(88)90057-9 CrossRefGoogle Scholar
  23. Erga SR, Skjoldal HR (1990) Diel variations in photosynthetic activity of summer phytoplankton in Lindaspollene, western Norway. Mar Ecol Prog Ser 65:73–85CrossRefGoogle Scholar
  24. Falkowski PG, Kolber Z (1993) Estimation of phytoplankton photosynthesis by active fluorescence. ICES Mar Sci Symp 197:92–103Google Scholar
  25. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92. doi: 10.1016/S0304-4165(89)80016-9 CrossRefGoogle Scholar
  26. Gilbert M, Domin A, Becker A, Wilhelm C (2000) Estimation of primary productivity by chlorophyll a in vivo fluorescence in freshwater phytoplankton. Photosynthetica 38(1):111–126. doi: 10.1023/A:1026708327185 CrossRefGoogle Scholar
  27. Grattepanche JD, Breton E, Brylinski JM, Lecuyer E, Christaki U (2011) Succession of primary producers and micrograzers in a coastal ecosystem dominated by Phaeocystis globosa blooms. J Plankton Res 33:37–50. doi: 10.1093/plankt/fbq097 CrossRefGoogle Scholar
  28. Harding LW Jr, Fisher TR Jr, Tyler MA (1987) Adaptive responses of photosynthesis in phytoplankton: specificity to time-scale of change in light. Biol Oceanogr 4:403–437Google Scholar
  29. Harris GN, Scanlan DJ, Geider RJ (2005) Acclimation of Emiliania huxleyi (Prymnesiophyceae) to photon flux density. J Phycol 41:851–862. doi: 10.1111/j.1529-8817.2005.00109.x CrossRefGoogle Scholar
  30. Henley WJ (1993) Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J Phycol 29(6):729–738. doi: 10.1111/j.0022-3646.1993.00729.x CrossRefGoogle Scholar
  31. Houliez E, Lizon F, Thyssen M, Artigas LF, Schmitt FG (2012) Spectral fluorometric characterization of Haptophyte dynamics using the FluoroProbe: an application in the eastern English Channel for monitoring Phaeocystis globosa. J Plankton Res 34(2):136–151. doi: 10.1093/plankt/fbr091 CrossRefGoogle Scholar
  32. Jones RI (1978) Adaptations to fluctuating irradiance by natural phytoplankton communities. Limnol Oceanogr 23:920–926CrossRefGoogle Scholar
  33. Jouenne F, Lefebvre S, Véron B, Lagadeuc Y (2005) Biological and physicochemical factors controlling short-term variability in phytoplankton primary production and photosynthetic parameters in a macrotidal ecosystem (eastern English Channel). Estuar Coast Shelf Sci 65(3):421–439. doi: 10.1016/j.ecss.2005.05.023 CrossRefGoogle Scholar
  34. Juneau P, Harrison PJ (2005) Comparison by PAM fluorimetry of photosynthetic activity of nine marine phytoplankton grown under identical conditions. Photochem Photobiol 81:649–653. doi: 10.1562/2005-01-13-RA-414.1 CrossRefGoogle Scholar
  35. Kolbowski J, Schreiber U (1995) Computer-controlled phytoplankton analyser based on a 4-wavelengths PAM chlorophyll fluorometer. In: Mathis P (ed) Photosynthesis: from light to biosphere (V). Kluwer Academic Publishers, Dordrecht, pp 825–828Google Scholar
  36. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349CrossRefGoogle Scholar
  37. Kromkamp J, Forster R (2003) The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. Eur J Phycol 38:103–112. doi: 10.1080/0967026031000094094 CrossRefGoogle Scholar
  38. Kropuenske LR, Mills MM, Van Dijken GL, Alderkamp AC, Mine Berg G, Robinson DH, Welschmeyer NA, Arrigo KR (2010) Strategies and rates of photoacclimation in two major southern ocean phytoplankton taxa: Phaeocystis Antarctica (Haptophyta) and Fragilariopsis cylindrus (Bacillariophyceae). J Phycol 46(6):1138–1151. doi: 10.1111/j.1529-8817.2010.00922.x CrossRefGoogle Scholar
  39. Kulk G, Van De Poll WH, Visser RJW, Buma AGJ (2011) Distinct differences in photoacclimation potential between prokaryotic and eukaryotic oceanic phytoplankton. J Exp Mar Biol Ecol 398:63–72. doi: 10.1016/j.jembe.2010.12.011 CrossRefGoogle Scholar
  40. Lavaud J (2007) Fast regulation of photosynthesis in Diatoms: mechanisms, evolution and ecophysiology. Funct Plant Sci Biotech 1:267–287Google Scholar
  41. Lavaud J, Rousseau B, Etienne AL (2003) Enrichment of the light-harvesting complex in diadinoxanthin and implications for the nonphotochemical fluorescence quenching in diatoms. Biochemistry (Mosc) 42(19):5802–5808. doi: 10.1021/bi027112i CrossRefGoogle Scholar
  42. Lavaud J, Rousseau B, Van Gorkom HJ, Etienne AL (2002) Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Plant Physiol 129(3):1398–1406. doi: 10.1104/pp.002014 CrossRefGoogle Scholar
  43. Lavaud J, Strzepek RF, Kroth PG (2007) Photoprotection capacity differs among diatoms: possible consequences on the spatial distribution of diatoms related to fluctuations in the underwater light climate. Limnol Oceanogr Methods 52(3):1188–1194. doi: 10.4319/lo.2007.52.3.1188 CrossRefGoogle Scholar
  44. Lefebvre A, Guiselin N, Barbet F, Artigas LF (2011a) Long-term hydrological and phytoplankton monitoring (1992–2007) of three potentially eutrophic systems in the eastern English Channel and the Southern Bight of the North Sea. ICES J Mar Sci 68:2029–2043. doi: 10.1093/icesjms/fsr149 CrossRefGoogle Scholar
  45. Lefebvre S, Mouget JL, Lavaud J (2011b) Duration of rapid light curves for determining the photosynthetic activity of microphytobenthos biofilm in situ. Aquat Bot 95:1–8. doi: 10.1016/j.aquabot.2011.02.010 CrossRefGoogle Scholar
  46. Lewis MR, Horne EPW, Cullen JJ, Oakey NS, Platt T (1984) Turbulent motions may control phytoplankton photosynthesis in the upper ocean. Nature 311:49–50. doi: 10.1038/311049a0 CrossRefGoogle Scholar
  47. Lizon F, Lagadeuc Y, Brunet C, Aelbrecht D, Bentley D (1995) Primary production and photoadaptation of phytoplankton in relation with tidal mixing in coastal waters. J Plankton Res 17:1039–1055. doi: 10.1093/plankt/17.5.1039 CrossRefGoogle Scholar
  48. Lizon F, Seuront L, Lagadeuc Y (1998) Photoadaptation and primary production study in tidally mixed coastal waters using a Lagrangian model. Mar Ecol Prog Ser 169:43–54. doi: 10.3354/meps169043 CrossRefGoogle Scholar
  49. Lohrenz S, Fahnenstiel GL, Redalje DG (1994) Spatial and temporal variations of photosynthetic parameters in relation to environmental conditions in coastal waters of the northern Gulf of Mexico. Estuaries 17:779–795. doi: 10.2307/1352747 CrossRefGoogle Scholar
  50. Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662. doi: 10.1146/annurev.pp.45.060194.003221 CrossRefGoogle Scholar
  51. Lorenzen CJ (1966) A method for continuous measurement of in vivo chlorophyll concentration. Deep-Sea Res (1 Oceanogr Res Pap) 13:223–247. doi: 10.1016/0011-7471(66)91102-8
  52. MacCaull WA, Platt T (1977) Diel variations in the photosynthetic parameters of coastal phytoplankton. Limnol Oceanogr 22:723–731CrossRefGoogle Scholar
  53. MacIntyre HL, Cullen JJ (1996) Primary production by suspended and benthic microalgae in a turbid estuary: time-scales of variability in San Antonio Bay, Texas. Mar Ecol Prog Ser 145:245–268. doi: 10.3354/meps145245 CrossRefGoogle Scholar
  54. MacIntyre HL, Kana TM, Geider RJ (2000) The effect of water motion on short-term rates of photosynthesis by marine phytoplankton. Trends Plant Sci 5(1):12–17. doi: 10.1016/S1360-1385(99)01504-6 CrossRefGoogle Scholar
  55. Madariaga I (1995) Photosynthetic characteristics of phytoplankton during the development of a summer bloom in the Urdaibai Estuary, Bay of Biscay. Estuar Coast Shelf Sci 40:559–575. doi: 10.1006/ecss.1995.0038 CrossRefGoogle Scholar
  56. Marra J (1978) Phytoplankton photosynthetic response to vertical movement in a mixed layer. Mar Bio 46:203–208. doi: 10.1007/BF00390681 CrossRefGoogle Scholar
  57. Meyer AA, Tackx M, Daro N (2000) Xanthophyll cycling in Phaeocystis globosa and Thalassiosira sp.: a possible mechanism for species succession. J Sea Res 43(3–4):373–384. doi: 10.1016/S1385-1101(00)00031-9 CrossRefGoogle Scholar
  58. Mills MM, Kropuenske LR, Van Dijken GL, Alderkamp AC, Berg GM, Robinson DH, Welschmeyer NA, Arrigo KR (2010) Photophysiology in two southern ocean phytoplankton taxa: photosynthesis of Phaeocystis Antarctica (prymnesiophyceae) and Fragilariopsis Cylindrus (bacillariophyceae) under simulated mixed-layer irradiance. J Phycol 46:1114–1127. doi: 10.1111/j.1529-8817.2010.00923.x CrossRefGoogle Scholar
  59. Mitchell B (1990) Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT). Ocean Opt X:137–148. doi: 10.1117/12.21440
  60. Mitchell BG, Kahru M, Wieland J, Stramska M (2003) Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. In: Mueller JL, Fargion GS, McClain CR (eds) Ocean optics protocols for satellite ocean color sensor validation. Revision 4-volume IV, NASA Technical Memorandum 2003–211621, pp 39–64Google Scholar
  61. Müller P, Li XP, Niyogi K (2001) Non-photochemical quenching. a response to excess light energy. Plant Physiol 125:1558–1566. doi: 10.1104/pp.125.4.1558 CrossRefGoogle Scholar
  62. Neale PJ, Richerson PJ (1987) Photoinhibition and the diurnal variation of phytoplankton photosynthesis-I. Development of a photosynthesis-irradiance model from studies of in situ responses. J Plankton Res 9:167–193. doi: 10.1093/plankt/9.1.167 CrossRefGoogle Scholar
  63. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313. doi: 10.1093/comjnl/7.4.308 CrossRefGoogle Scholar
  64. Perkins RG, Mouget JL, Lefebvre S, Lavaud J (2006) Light response curve methodology and possible implications in the application of chlorophyll fluorescence to benthic diatoms. Mar Biol 149:703–712. doi: 10.1007/s00227-005-0222-z CrossRefGoogle Scholar
  65. Platt T, Jassby AD (1976) The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton. J Phycol 12:421–430. doi: 10.1111/j.1529-8817.1976.tb02866.x Google Scholar
  66. Putt M, Prézelin BB (1985) Observations of diel patterns of photosynthesis in cyanobacteria and nanoplankton in the Santa Barbara channel during “El Niño”. J Plankton Res 7:779–790. doi: 10.1093/plankt/7.6.779 CrossRefGoogle Scholar
  67. Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot 82:222–237. doi: 10.1016/j.aquabot.2005.02.006 CrossRefGoogle Scholar
  68. Ralph PJ, Polk SM, Moore KA, Orth RJ, Smith WO Jr (2002) Operation of the xanthophyll cycle in the seagrass Zostera marina in response to variable irradiance. J Exp Mar Biol Ecol 271:189–207. doi: 10.1016/S0022-0981(02)00047-3 CrossRefGoogle Scholar
  69. Redfield AC (1934) On the proportions of organic derivations in sea water and their relation to the composition of plankton. In: Daniel RJ (ed) James Johnstone memorial volume. University Press of Liverpool, Liverpool, pp 177–192Google Scholar
  70. Richardson K, Beardall J, Raven JA (1983) Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol 93(2):157–191. doi: 10.1111/j.1469-8137.1983.tb03422.x CrossRefGoogle Scholar
  71. Sakshaug E, Bricaud A, Dandonneau Y, Falkowski PG, Kiefer DA, Legendre L, Morel A, Parslow J, Takahashi M (1997) Parameters of photosynthesis: definitions, theory and interpretation of results. J Plankton Res 19(11):1637–1670. doi: 10.1093/plankt/19.11.1637 CrossRefGoogle Scholar
  72. Sall J, Creighton L, Lehman A (2007) JMP start statistics: a guide to statistics and data analysis using JMP, 4th edn. SAS Institute Inc., Cary, NC, p 607Google Scholar
  73. Savidge G (1988) Influence of inter- and intra-daily light-field variability on photosynthesis by coastal phytoplankton. Mar Biol 100:127–133. doi: 10.1007/BF00392962 CrossRefGoogle Scholar
  74. Schapira M, Vincent D, Gentilhomme V, Seuront L (2008) Temporal patterns of phytoplankton assemblages, size spectra and diversity during the wane of a Phaeocystis globosa spring bloom in hydrologically contrasted coastal waters. J Mar Biol Assoc UK 88(4):649–662. doi: 10.1017/S0025315408001306 CrossRefGoogle Scholar
  75. Scherrer B (2007) Biostatistique, vol 1, 2e édn. Gaëtan Morin éditeur. 816 ppGoogle Scholar
  76. Schofield O, Evens TJ, Millie DF (1998) Photosystem II quantum yields and xanthophyll-cycle pigments of the macroalga Sargassum natans (Phaeophyceae): responses under natural sunlight. J Phycol 34:104–112. doi: 10.1046/j.1529-8817.1998.340104.x CrossRefGoogle Scholar
  77. Schreiber U (1998) Chlorophyll fluorescence: new instruments for special applications. In: Garab G (ed) Photosynthesis: mechanisms and effects, vol 5. Kluwer Academic Publishers, Dordrecht, pp 4253–4258Google Scholar
  78. Schubert H, Sagert S, Forster RM (2001) Evaluation of the different levels of variability in the underwater light field of a shallow estuary. Helgol Mar Res 55:12–22. doi: 10.1007/s101520000064 CrossRefGoogle Scholar
  79. Serôdio J, Vieira S, Cruz S (2008) Photosynthetic activity, photoprotection and photoinhibition in intertidal microphytobenthos as studied in situ using variable chlorophyll fluorescence. Cont Shelf Res 28:1363–1375. doi: 10.1016/j.csr.2008.03.019 CrossRefGoogle Scholar
  80. Seuront L, Vincent D, Mitchell JG (2006) Biologically induced modification of seawater viscosity in the eastern English Channel during a Phaeocystis globosa spring bloom. J Mar Syst 61:118–133. doi: 10.1016/j.jmarsys.2005.04.010 CrossRefGoogle Scholar
  81. Shaw PJ, Purdie DA (2001) Phytoplankton photosynthesis-irradiance parameters in the near-shore UK coastal waters of the North Sea: temporal variation and environmental control. Mar Ecol Prog Ser 216:83–94. doi: 10.3354/meps216083 CrossRefGoogle Scholar
  82. Six C, Finkel ZV, Rodriguez F, Marie D, Partensky F, Campbell DA (2008) Contrasting photoacclimation costs in ecotypes of the marine eukaryotic picoplankter Ostreococcus. Limnol Oceanogr Methods 53:255–265. doi: 10.4319/lo.2008.53.1.0255 CrossRefGoogle Scholar
  83. Staehr PA, Henriksen P, Markager S (2002) Photoacclimation of four marine phytoplankton species to irradiance and nutrient availability. Mar Ecol Prog Ser 238:47–59. doi: 10.3354/meps238047 CrossRefGoogle Scholar
  84. Strzepek RF, Harrison PJ (2004) Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431:689–692. doi: 10.1038/nature02954 CrossRefGoogle Scholar
  85. Suggett DJ, Le Floc’H E, Harris GN, Leonardos N, Geider RJ (2007) Different strategies of photoacclimation by two strains of Emiliania huxleyi (Haptophyta). J Phycol 43:1209–1222. doi: 10.1111/j.1529-8817.2007.00406.x CrossRefGoogle Scholar
  86. Tillmann U, Hesse KJ, Colijn F (2000) Planktonic primary production in the German Wadden sea. J Plankton Res 22(7):1253–1276. doi: 10.1093/plankt/22.7.1253 CrossRefGoogle Scholar
  87. Van De Poll WH, Van Leeuwe MA, Roggeveld J, Buma AGJ (2005) Nutrient limitation and high irradiance acclimation reduce par and UV-induced viability loss in the antarctic diatom Chaetoceros brevis (Bacillariophyceae). J Phycol 41:840–850. doi: 10.4319/lo.2007.52.4.1430 CrossRefGoogle Scholar
  88. Van De Poll WH, Visser RJW, Buma AGJ (2007) Acclimation to a dynamic irradiance regime changes excessive irradiance sensitivity of Emiliania huxleyi and Thalassiosira weissflogii. Limnol Oceanogr Methods 52:1430–1438. doi: 10.4319/lo.2007.52.4.1430 CrossRefGoogle Scholar
  89. van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosyn Res 25:147–150. doi: 10.1007/BF00033156 CrossRefGoogle Scholar
  90. Van Leeuwe MA, Van Sikkelerus B, Gieskes WWC, Stefels J (2005) Taxon-specific differences in photoacclimation to fluctuating irradiance in an Antarctic diatom and a green flagellate. Mar Ecol Prog Ser 288:9–19. doi: 10.3354/meps288009 CrossRefGoogle Scholar
  91. Vaulot D, Marie D (1999) Diel variability of photosynthetic picoplankton in the equatorial Pacific. J Geophys Res Oceans 104:3297–3310. doi: 10.1029/98JC01333 CrossRefGoogle Scholar
  92. White AJ, Critchley C (1999) Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosyn Res 59:63–72. doi: 10.1023/A:1006188004189 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Emilie Houliez
    • 1
  • Fabrice Lizon
    • 1
  • Sébastien Lefebvre
    • 1
  • Luis Felipe Artigas
    • 2
  • François G. Schmitt
    • 1
  1. 1.Laboratoire d’Océanologie et de Géosciences, CNRSUniversité Lille Nord de France, Université des Sciences et Technologies de Lille, Lille 1WimereuxFrance
  2. 2.Laboratoire d’Océanologie et de Géosciences, CNRSUniversité Lille Nord de France, Université du Littoral Côte d’OpaleWimereuxFrance

Personalised recommendations