Marine Biology

, Volume 160, Issue 5, pp 1285–1296 | Cite as

Global population divergence of the sea star Hippasteria phrygiana corresponds to the onset of the last glacial period of the Pleistocene

  • D. W. FoltzEmail author
  • S. D. Fatland
  • M. Eléaume
  • K. Markello
  • K. L. Howell
  • K. Neill
  • C. L. Mah
Original Paper


Genetic structure and connectivity of populations of the globally distributed and eurybathic sea star Hippasteria phrygiana (Parelius 1768) were studied in 165 individuals sampled from three oceanic regions: the North Pacific Ocean, the South Pacific Ocean (considered to include the adjacent regions of the Southern Ocean and the southern Indian Ocean) and the North Atlantic Ocean. A nuclear gene region (ATP synthase subunit α intron #5, ATPSα) and a mitochondrial gene region (cytochrome oxidase subunit I, COI) were amplified and sequenced. Significant heterogeneity was detected in an AMOVA analysis among the three sampled oceanic regions for COI, but not for ATPSα. Neither gene showed significant genetic heterogeneity within the North Atlantic, as assessed by ΦST values. Significant heterogeneity was detected for COI (but not ATPSα) in the North Pacific, but the converse was true in the South Pacific. Coalescent simulations suggested that the three regions have been diverging with little or no gene flow for the past 50–75,000 years, a time frame that corresponds to the onset of the last glacial period of the Pleistocene. A possible genetic signature of recent population expansion (or non-neutrality) was detected for each gene in the North Pacific, but not in the other two oceanic regions.


Spinosa Kerguelen Island High Posterior Density Interval Abundant Haplotype Marine Invertebrate Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the following persons for sampling and/or providing access to specimens: David Clague and Lonny Lundsten (Monterey Bay Aquarium Research Institute, Moss Landing, CA), Roger N. Clark (Insignis Biological Consulting, Eagle Mountain, UT), Prof. G. Duhamel and Noémie Vasset (MNHN, Paris, France), Annie Mercier and J.F. Hamel (Ocean Sciences Center, Memorial University, Newfoundland, Canada), Martha Nizinski (National Marine Fisheries Service, NOAA, Washington DC), Neil McDaniel (British Columbia, Canada), Robert J. Van Syoc and Christina Piotrowski (California Academy of Sciences, San Francisco, CA), Amber York (Woods Hole Oceanographic Institution, Woods Hole, MA). Collection of North Atlantic specimens was facilitated by J. Drewery (Marine Scotland-Science, Aberdeen, Scotland, AB11 9DB UK). Specimens provided by the National Institute of Water and Atmospheric Research (NIWA) Invertebrate Collection were collected from various cruises funded by the New Zealand Ministry for Primary Industries (Fisheries, MPI), Land Information New Zealand (LINZ), NIWA and New Zealand Department of Conservation; the Scientific Observer Program funded by the New Zealand MPI; the New Zealand International Polar Year–Census of Antarctic Marine Life with project governance provided by the MPI Science Team and the Ocean Survey 20/20 CAML Advisory Group (LINZ, MPI, Antarctica New Zealand, Ministry of Foreign Affairs and Trade and NIWA); New Zealand Foundation for Research, Science and Technology, and CSIRO’s Division of Marine and Atmospheric Research. Michael W. Hart and Sam White provided help with the IMa2 analysis; Taylor M. Bass assisted in the laboratory. Funding was provided by NSF award DEB-1036358 to Foltz and Mah, as well as by two REU supplements to the above award.

Supplementary material

227_2013_2180_MOESM1_ESM.xlsx (25 kb)
Supplementary material 1 (XLSX 25 kb)


  1. Addison JA, Hart MW (2005) Colonization, dispersal, and hybridization influence phylogeography of North Atlantic sea urchins (Strongylocentrotus droebachiensis). Evolution 59:532–543Google Scholar
  2. Alton MS (1966) Bathymetric distribution of sea stars (Asteroidea) off the northern Oregon coast. J Fish Res Board Canada 23:1673–1714CrossRefGoogle Scholar
  3. Anisimova NA (1989) Distributional patterns of echinoderms in the Eurasian sector of the Arctic Ocean. In: Herman Y (ed) The Arctic seas: climatology, oceanography, geology, and biology. Van Nostrand Reinhold, New York, pp 281–301Google Scholar
  4. Audzijonyte A, Väinölä R (2006) Phylogeographic analyses of a circumarctic coastal and a boreal lacustrine mysid crustacean, and evidence of fast postglacial mtDNA rates. Mol Ecol 15:3287–3301CrossRefGoogle Scholar
  5. Barron JA, Bukry D, Dean WE, Addison JA, Finney B (2009) Paleoceanography of the Gulf of Alaska during the past 15,000 years: results from diatoms, silicoflagellates, and geochemistry. Mar Micropaleontol 72:176–195CrossRefGoogle Scholar
  6. Bernasconi I (1961) Una nueva especie de asteroideo. Neotropica 7:1–2Google Scholar
  7. Birkeland C (1974) Interactions between a sea pen and seven of its predators. Ecol Monogr 44:211–232CrossRefGoogle Scholar
  8. Bradbury IR, Laurel B, Snelgrove PVR, Bentzen P, Campana SE (2008) Global patterns in marine dispersal estimates: the influence of geography, taxonomic category and life history. Proc R Soc Lond B 275:1803–1809CrossRefGoogle Scholar
  9. Branch ML, Jangoux M, Alvà V, Massin Cl, Stampanato S (1993) The Echinodermata of subantarctic Marion and Prince Edward Islands. S Afr J Antarct Res 23:37–70Google Scholar
  10. Briggs JC (2003) Marine centres of origin as evolutionary engines. J Biogeogr 30:1–18CrossRefGoogle Scholar
  11. Castelloe J, Templeton AR (1994) Root probabilities for intraspecific gene trees under neutral coalescent theory. Mol Phylogenet Evol 3:102–113CrossRefGoogle Scholar
  12. Clark AM (1996) An index of names of recent Asteroidea–Part 3: Velatida and Spinulosida. Echinoderm Stud 5:183–250Google Scholar
  13. Clark AM, Downey ME (1992). Starfishes of the Atlantic. Chapman and Hall Identification Guides 3. Chapman and Hall, LondonGoogle Scholar
  14. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefGoogle Scholar
  15. Collins TM, Frazer K, Palmer AR, Vermeij GJ, Brown WM (1996) Evolutionary history of northern hemisphere Nucella (Gastropoda, Muricidae): molecular, morphological, ecological, and paleontological evidence. Evolution 50:2287–2304CrossRefGoogle Scholar
  16. Corstorphine EA (2010) DNA barcoding of echinoderms: species diversity and patterns of molecular evolution. University of Guelph, Ontario, Canada, Master ThesisGoogle Scholar
  17. Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Annu Rev Mar Sci 1:443–466CrossRefGoogle Scholar
  18. D’iakonov AM (1968) Sea Stars (Asteroids) of the USSR Seas. [Morskie Zvezdy Morei SSSR]. Israel Program for Scientific Translations, Jerusalem, IsraelGoogle Scholar
  19. Darling KF, Kucera M, Wade CM (2007) Global molecular phylogeography reveals persistent Arctic circumpolar isolation in a marine planktonic protist. Proc Natl Acad Sci USA 104:5002–5007CrossRefGoogle Scholar
  20. Dawson MN, Hamner WM (2008) A biophysical perspective on dispersal and the geography of evolution in marine and terrestrial systems. J R Soc Interface 5:135–150CrossRefGoogle Scholar
  21. Dodson JJ, Tremblay S, Colombani F, Carscadden JE, Lecomte F (2007) Trans-Arctic dispersals and the evolution of a circumpolar marine fish species complex, the capelin (Mallotus villosus). Mol Ecol 16:5030–5043CrossRefGoogle Scholar
  22. Dubois N, Kienast M, Kienast S, Normandeau C, Calvert SE, Herbert TD, Mix A (2011) Millennial-scale variations in hydrography and biogeochemistry in the Eastern Equatorial Pacific over the last 100 kyr. Quat Sci Rev 30:210–223CrossRefGoogle Scholar
  23. Dunton K (1992) Arctic biogeography: the paradox of the marine benthic fauna and flora. Trends Ecol Evol 7:183–189CrossRefGoogle Scholar
  24. Durbin A, Hebert PDN, Cristescu MEA (2008) Comparative phylogeography of marine cladocerans. Mar Biol 155:1–10CrossRefGoogle Scholar
  25. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefGoogle Scholar
  26. Ehlers J, Gibbard PL (2007) The extent and chronology of Cenozoic global glaciation. Quat Int 164(165):6–20CrossRefGoogle Scholar
  27. Excoffier L, Laval G, Schneider S (2005) Arlequin version 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  28. Fell HB (1962) West-wind-drift dispersal of echinoderms in the southern hemisphere. Nature 193:759–761CrossRefGoogle Scholar
  29. Foltz DW (2007) An ancient repeat sequence in the ATP synthase β subunit gene of forcipulate sea stars. J Mol Evol 65:564–573CrossRefGoogle Scholar
  30. Foltz DW, Mah CL (2009) Recent relaxation of purifying selection on the tandem-repetitive early-stage histone H3 gene in brooding sea stars. Mar Genomics 2:113–118CrossRefGoogle Scholar
  31. Foltz DW, Bolton MT, Kelley SP, Kelley BD, Nguyen AT (2007) Combined mitochondrial and nuclear sequences support the monophyly of forcipulatacean sea stars. Mol Phylogenet Evol 43:627–634CrossRefGoogle Scholar
  32. Franz DR, Worley EK, Merrill AS (1981) Distribution patterns of common seastars of the middle Atlantic continental shelf of the Northwest Atlantic (Gulf of Maine to Cape Hatteras). Biol Bull 160:394–418CrossRefGoogle Scholar
  33. Frasier FI, Nikula R, Spencer HG, Waters JM (2009) Kelp genes reveal effects of subantarctic sea ice during the last glacial maximum. Proc Natl Acad Sci USA 106:3249–3253CrossRefGoogle Scholar
  34. Goetze E (2005) Global population genetic structure and biogeography of the oceanic copepods Eucalanus hyalinus and E. spinifer. Evolution 59:2378–2398Google Scholar
  35. Goetze E (2011) Population differentiation in the open sea: insights from the pelagic copepod Pleuromamma xiphias. Integr Comp Biol 51:580–597CrossRefGoogle Scholar
  36. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224CrossRefGoogle Scholar
  37. Grainger EH (1966) Sea stars (Echinodermata: Asteroidea) of arctic North America. Bull Fish Res Board Can 152:1–70Google Scholar
  38. Gray JE (1840) A synopsis of the genera and species of the class Hypostoma (Asterias Linnaeus). Ann Mag Nat Hist 6:175–184, 275–290Google Scholar
  39. Gutt J (2001) On the direct impact of ice on marine benthic communities, a review. Polar Biol 24:553–564CrossRefGoogle Scholar
  40. Hardy SM, Carr CM, Hardman M, Steinke D, Corstorphine E, Mah C (2011) Biodiversity and phylogeography of Arctic marine fauna: insights from molecular tools. Mar Biodivers 41:195–210CrossRefGoogle Scholar
  41. Harper FM, Addison JA, Hart MW (2007) Introgression versus immigration in hybridizing high-dispersal echinoderms. Evolution 61:2410–2418CrossRefGoogle Scholar
  42. Hart MW, Byrne M, Smith M (1997) Molecular phylogenetic analysis of life history evolution in asterinid starfish. Evolution 51:1848–1861CrossRefGoogle Scholar
  43. Hoareau TB, Boissin E (2010) Design of phylum-specific hybrid primers for DNA barcoding: addressing the need for efficient COI amplification in the Echinodermata. Mol Ecol Resour 10:960–967CrossRefGoogle Scholar
  44. Hoegh-Guldberg O, Pearse JS (1995) Temperature, food availability, and the development of marine invertebrate larvae. Am Zool 35:415–425Google Scholar
  45. Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111:147–164Google Scholar
  46. Ilves KL, Huang W, Wares JP, Hickerson MJ (2010) Colonization and/or mitochondrial selective sweeps across the North Atlantic intertidal assemblage revealed by multi-taxa approximate Bayesian computation. Mol Ecol 19:4505–4519CrossRefGoogle Scholar
  47. Jansson R, Dynesius M (2002) The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annu Rev Ecol Syst 33:741–777CrossRefGoogle Scholar
  48. Kaiser J, Lamy F, Hebbeln D (2005) A 70-kyr sea surface temperature record off southern Chile (Ocean Drilling Program Site 1233). Paleoceanography 20, PA4009 doi: 10.1029/2005PA001146
  49. Keever CC, Sunday J, Puritz JB et al (2009) Discordant distribution of populations and genetic variation in a sea star with high dispersal potential. Evolution 63:3214–3227CrossRefGoogle Scholar
  50. Krieger KJ, Wing BL (2002) Megafauna associations with deepwater corals (Primnoa spp.) in the Gulf of Alaska. Hydrobiologia 471:83–90CrossRefGoogle Scholar
  51. Lambert P (2000) Sea stars of British Columbia, southeast Alaska and Puget Sound. UBC Press, Vancouver, British ColumbiaGoogle Scholar
  52. Lessios HA (2008) The great American schism: divergence of marine organisms after the rise of the central American isthmus. Annu Rev Ecol Evol Syst 39:63–91CrossRefGoogle Scholar
  53. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefGoogle Scholar
  54. Luttikhuizen PC, Drent J, Baker AJ (2003) Disjunct distribution of highly diverged mitochondrial lineage clade and population subdivision in a marine bivalve with pelagic larval dispersal. Mol Ecol 12:2215–2229CrossRefGoogle Scholar
  55. Maggs CA, Castilho R, Foltz D et al (2008) Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89:S108–S122CrossRefGoogle Scholar
  56. Mah C, Nizinski M, Lundsten L (2010) Phylogenetic revision of the Hippasterinae (Goniasteridae; Asteroidea): systematics of deep sea corallivores, including one new genus and three new species. Zool J Linn Soc 160:266–301CrossRefGoogle Scholar
  57. Marincovich L, Gladenkov AY (1999) Evidence for an early opening of the Bering Strait. Nature 397:149–151CrossRefGoogle Scholar
  58. Nelson RJ, Carmack EC, McLaughlin FA, Cooper GA (2009) Penetration of Pacific zooplankton into the western Arctic Ocean tracked with molecular population genetics. Mar Ecol Prog Ser 381:129–138CrossRefGoogle Scholar
  59. Nikula R, Strelkov P, Väinölä R (2007) Diversity and trans-Arctic invasion history of mitochondrial lineages in the north Atlantic Macoma balthica complex (Bivalvia: Tellinidae). Evolution 61:928–941CrossRefGoogle Scholar
  60. Norris RD, Hull PM (2011) The temporal dimension of marine speciation. Evol Ecol 26:393–415CrossRefGoogle Scholar
  61. Orti G, Bell MA, Reimchen TE, Meyer A (1994) Global survey of mitochondrial DNA sequences in the threespine stickleback: evidence for recent migrations. Evolution 48:608–622CrossRefGoogle Scholar
  62. Palumbi SR, Kessing BD (1991) Population biology of the trans-Arctic exchange: mtDNA sequence similarity between Pacific and Atlantic sea urchins. Evolution 45:1790–1805CrossRefGoogle Scholar
  63. Parelius J (1768) Beskrivelse over Nogle Korstrold. K Norske Vidensk Selsk Skr 4: 423–428Google Scholar
  64. Rahmstorf S (2002) Ocean circulation and climate during the past 120,000 years. Nature 419:207–214CrossRefGoogle Scholar
  65. Rawson PD, Harper FM (2009) Colonization of the northwest Atlantic by the blue mussel, Mytilus trossulus postdates the last glacial maximum. Mar Biol 156:1857–1868CrossRefGoogle Scholar
  66. Reid DG, Rumbak E, Thomas RH (1996) DNA, morphology and fossils: phylogeny and evolutionary rates of the gastropod genus Littorina. Philos Trans R Soc Lond B 351:877–895CrossRefGoogle Scholar
  67. Schneider S, Excoffier L (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079–1089Google Scholar
  68. Stampanato S, Jangoux M (2004) The asteroid fauna (Echinodermata) of the Marion and Prince Edward Island. Ann S Afr Mus 112:1–16Google Scholar
  69. Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169CrossRefGoogle Scholar
  70. Strathmann MF (1987) Phylum Echinodermata, class Asteroidea. In: Strathmann MF (ed) Reproduction and development of marine invertebrates of the Northern Pacific coast: data and methods for the study of eggs, embryos, and larvae. University of Washington Press, Seattle, pp 535–555Google Scholar
  71. Taylor EB, Dodson JJ (1994) A molecular analysis of relationships and biogeography within a species complex of Holarctic fish (genus Osmerus). Mol Ecol 3:235–248CrossRefGoogle Scholar
  72. Toews DPL, Brelsford A (2012) The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol 21:3907–3930CrossRefGoogle Scholar
  73. Väinölä R (2003) Repeated trans-Arctic invasions in littoral bivalves: molecular zoogeography of the Macoma balthica complex. Mar Biol 143:935–946CrossRefGoogle Scholar
  74. Vogler C, Benzie J, Lessios H, Barber P, Wörheide G (2008) A threat to coral reefs multiplied? Four species of crown-of-thorns starfish. Biol Lett 4:696–699CrossRefGoogle Scholar
  75. Vrijenhoek RC (2009) Cryptic species, phenotypic plasticity, and complex life histories: assessing deep-sea faunal diversity with molecular markers. Deep Sea Res II 56:1713–1723CrossRefGoogle Scholar
  76. Vrijenhoek RC (2010) Genetic diversity and connectivity of deep-sea hydrothermal vent metapopulations. Mol Ecol 19:4391–4411CrossRefGoogle Scholar
  77. Ward RD, Holmes BH, O’Hara TD (2008) DNA barcoding discriminates echinoderm species. Mol Ecol Resour 8:1202–1211CrossRefGoogle Scholar
  78. Wares JP (2001) Biogeography of Asterias: North Atlantic climate change and speciation. Biol Bull 201:95–103CrossRefGoogle Scholar
  79. Wares JP (2002) Community genetics in the Northwestern Atlantic intertidal. Mol Ecol 11:1131–1144CrossRefGoogle Scholar
  80. Wares JP, Cunningham CW (2001) Phylogeography and historical ecology of the north Atlantic intertidal. Evolution 55:2455–2469Google Scholar
  81. Waters JM, Roy MS (2003) Global phylogeography of the fissiparous sea-star genus Coscinasterias. Mar Biol 142:185–191Google Scholar
  82. Weersing K, Toonen RJ (2009) Population genetics, larval dispersal, and connectivity in marine systems. Mar Ecol Prog Ser 393:1–12CrossRefGoogle Scholar
  83. Williams GC (2011) The global diversity of sea pens (Cnidaria: Octocorallia: Pennatulacea). PLoS ONE 6:e22747. doi: 10.1371/journal.pone.0022747 CrossRefGoogle Scholar
  84. Zulliger DE, Lessios HA (2010) Phylogenetic relationships in the genus Astropecten Gray (Paxillosida: Astropectinidae) on a global scale: molecular evidence for morphological convergence, species-complexes and possible cryptic speciation. Zootaxa 2504:1–19Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • D. W. Foltz
    • 1
    Email author
  • S. D. Fatland
    • 1
  • M. Eléaume
    • 2
  • K. Markello
    • 3
  • K. L. Howell
    • 4
  • K. Neill
    • 5
  • C. L. Mah
    • 1
    • 6
  1. 1.Department of Biological SciencesLouisiana State UniversityBaton RougeUSA
  2. 2.Département Peuplement et Milieux AquatiquesMuséum national d’Histoire naturelleParis Cedex 05France
  3. 3.Department of Invertebrate Zoology and GeologyCalifornia Academy of SciencesSan FranciscoUSA
  4. 4.Marine Biology and Ecology Research Centre, Marine InstituteUniversity of PlymouthPlymouthUK
  5. 5.National Institute of Water and Atmospheric ResearchKilbirnie, WellingtonNew Zealand
  6. 6.Department of Invertebrate ZoologyNational Museum of Natural HistoryWashingtonUSA

Personalised recommendations